
Minimally Invasive Migration to Software Product Lines 
 

 

Hans Peter Jepsen, Jan Gaardsted Dall 

Danfoss Drives 

{hans_peter_jepsen ,gaardsted}@danfoss.com 

Danilo Beuche 

pure-systems GmbH 

danilo.beuche@pure-systems.com 

 

 

 

Abstract 
 

Danfoss Drives - one of the largest producers of 

frequency converters in the world - is in a situation 

like many others: it has to produce a number of 

product series with an increasing number of 

variants, while at the same time decreasing time-to-

market and keeping development costs low. As part 

of the strategy to master this challenge, Danfoss 

Drives decided to reduce software development 

efforts by migrating to a product line approach. 

This paper describes the approach Danfoss 

Drives took to successfully introduce Software 

Product Line Principles into its organization. 

 

1. Introduction 
 

Danfoss Drives - one of the largest producers of 

frequency converters in the world - is in a situation 

like many others: it has to produce a number of 

product series with an increasing number of variants, 

while at the same time decreasing time-to-market and 

keeping development costs low. Several important 

steps have been taken over time in order to meet 

these challenges. Products are being developed on a 

common product family software architecture based 

on object-oriented principles. This architecture 

serves as a foundation for systematic software reuse. 

However, a product family architecture is not 

enough. The latest step is to structure the 

development process along the principles of software 

product line engineering. 

This article will describe the migration of the 

Danfoss Drives software development towards a 

product line approach and discuss some findings of 

use to others starting a similar migration process. 

Before going into the details of this migration, a 

brief introduction of the application domain 

(frequency converters) and Danfoss Drives’ 

Development organization setup will be given. 

Section 2 briefly reviews the history of Software 

Development at Danfoss Drives, since it is important 

to see the steps in order to understand the result. The 

following section 3 discusses the set-up phase of the 

migration where most of the “thinking” was done and 

also describes how the initial software family was 

constructed from existing software systems. Section 4 

will then describe the rollout phase where the 

different project teams migrated their development 

processes. The following section 5 summarizes the 

initial learning-points from the rollout. We then take 

a brief look at tooling issues and conclude with a 

summary and some remarks about the future of 

product line development at Danfoss Drives. 

 

1.1. The Domain 
 

A frequency converter is an electronic power 

conversion device used to control shaft speed or 

torque of a three-phase induction motor to match the 

needs of a given application. This is done by 

controlling the frequency and corresponding voltage 

on the (three) motor cables. Applications for 

frequency converters are found in many domains. For 

instance using a frequency converter in connection 

with a fan to maintain a desired room temperature 

while conserving as much energy as possible (see 

Figure 1), other examples are moving rollers in 

plants or pumping water using electrical pumps. 

This wide range of possible applications requires 

a high degree of variability in the product line. The 

parameters of the motors to be controlled vary. The 

environments in which the converters have to be 

integrated are very diverse, in some cases they work 

standalone, some are connected using (different) 

field busses and protocols, the integrated control 

algorithms vary, etc. 

 



 
Figure 1 Frequency Converter Application 
Scenario: Fan control 
 

Due to hardware and cost constraints, among 

other reasons, it is not possible to equip all frequency 

converters with universal software fit for any 

imaginable purpose. 

Danfoss Drives has traditionally released three 

main frequency converter series – for industry, for 

HVAC (Heat, Ventilation and Air-conditioning) and 

for the water segment – and many special products 

(e.g. for crane and specific textile applications) as 

well as some brand labelled products. 

Most of these products are very flexible and have 

several hundred configuration items (called 

parameters), that give the customer the possibility to 

adapt the frequency converter to the application. 

Furthermore the customer has the possibility of 

adding optional modules that enable field bus 

communication (e.g. Profibus) and extended I/O. 

 

1.2. The Embedded System 
 

A frequency converter from the new high end 

product series, where the first products were released 

in 2003, is a distributed system with at least three 

microprocessors.  The main processor is an ARM7 

running several hundred thousand lines of C++ code. 

This is tightly coupled with a powerful DSP with 

peripherals selected for motor control. These two 

processors are located on a control board, which is 

used in all products with minor variants.  

The third microprocessor is located on the power 

unit, which exists in many different sizes depending 

on the size of the motor is has to control. This 

processor is a small 8 bit processor. 

The optional modules – a graphical control and 

configuration device and up to four modules from a 

broad palette of communication modules and I/O 

extensions – are all equipped with one or two 

microprocessors. The media for communication 

between these processors are high speed CAN, SPI 

and asynchronous serial. 

The software architecture has three main parts 

(see Figure 2). 

One is the continuous processing part, which is 

time-driven at a very high rate. The input part of this 

samples or receives set points and/or feedbacks and 

makes calculation on these. The output part is a very 

advanced motor control, where one of several control 

algorithms controls the motor. 

Next is the event-controlled part, where the input 

side (the CommandHandler) receives requests (e.g. 

start or stop) from digital I/O or field busses, decides 

what the resulting command is and sends it to the 

output part (the MotorManager). Here a state 

machine is responsible for selection, activation and 

deactivation of the different control algorithms.  

 

 
 

Figure 2 Architectural breakdown of a 
frequency converter 

 

Finally there is the configuration part, which 

receives user–specified parameters, validates these 

and sends them to subscribing subsystems in the 

other two parts. 

The continuous processing part and the event 

controlled part and the relation between these are 

described in detail in [1]. 

 

1.3. The Development Organisation 
 

With a total of 1100 employees globally and 

approximately 160 R&D resources – about 50 of 

them are embedded software developers - on 4 

development sites located in four different countries 

Danfoss Drives has a strong technical lead in the 

frequency converter market. 

Product development is addressed by a matrix 

organization where projects are carried out through 

integrated product development with dedicated 

personnel and market targets. Line organizations 

provide skilled developers for projects to draw upon 

to ensure application and domain knowledge for 

timely product releases. Since 1968, when a 

frequency converter was a pure electrical and 

mechanical solution, the software parts of the 

organization and product variation have increased 

Setpoints and 

Feedbacks 

Motor 

Controllers 

Motor 

Manager 

Command 

Handler 

  Motor 

VLT user 

  Sensor 

Continuous processing  

Configuration 

Event controlled 



significantly. Almost any functionality in a frequency 

converter is now handled by corresponding software.  

Product releases are typically every quarter or half 

yearly for different product lines. The product release 

cycle may vary by customer request as the demands 

for customer-adapted frequency converters are 

becoming more prevalent than general application 

solutions. 

 

2. A Bit of History 
 

Interest in improving the efficiency of software 

development is not new. Ideas of software reuse, 

more efficient development and handling of product 

variants have been around for more than 10 years 

within Danfoss Drives. Inspiration has come from 

four areas: object orientation, software architecture, 

software reuse and software product line 

development. 

The first step was to switch to object-oriented 

development using C++. The creation of a 

framework and the release of products based on this 

architecture happened in the late 1990s. This 

architecture defined a flexible architecture used now 

in many frequency converter products from Danfoss 

Drives [1]. 

Danfoss Drives was aware that the introduction of 

object-orientation and software architecture alone 

would not give the desired reuse. So conference 

visits and literature study about software reuse and 

later software product line development was 

undertaken. The idea of managed reuse was also 

heavily promoted within the development 

organization. The result was a technology project that 

analyzed the feasibility of managed reuse for all 

areas of the product development of the company. 

Among others, the experiences of the consumer 

electronics division of Philips was used in this work, 

most importantly regarding hardware development 

[2]. 

So when the development of the new product 

series began around year 2000 it was a company 

strategy that a much higher level of reuse should be 

achieved. 

This strategy was applied most effectively to the 

development of the frequency converter hardware 

(PCB and mechanical parts). A rigidly followed 

platform strategy is used to control these parts of the 

system in order to ensure maximum possible reuse 

and smallest possible change to mechanical and 

electrical designs. 

However, such strict reuse was not enforced on 

the software architecture and the code base. While all 

products basically reused the architectural 

framework, since it provide the necessary amount of 

freedom and variability, the evolution of the code 

base was not really controlled. As before reuse 

between projects was done in the “clone and own” 

way.  Code was taken from project branch to other 

project branch via merging in the version control 

system. 

The organization was not happy with this. But 

since all resources were needed for development of 

the first product in the new series, it was decided to 

live with this situation for a while.  

 

2.1. The Breakpoint 
 

In 2005 management and developers were ready 

to take the next step towards managed reuse. The 

first product in the new series had been successfully 

released. The second product cloned from an early 

release of the first was close to release. So resources 

could be found. 

The company also faced the need to develop an 

increasing number of specialized products, e.g. 

frequency converters with a tailor-made user 

interface and also control algorithms for specific 

market segments. 

The Embedded Software Platform (ESP) project 

was formed as reaction to this challenge in 2005.  

 

3. Get Going 
 

3.1. Organizational Moves  
 

The migration was started as an internal project 

called the Embedded Software Platform project. Its 

aim was to find a way to create a common software 

platform for all products based on the object-oriented 

framework. The importance of this project was 

visible from the high profile of the initial team 

members. All had several years of development 

experience within Danfoss Drives. The team 

consisted of six persons. They were architects, 

function developers and test experts. Some of them 

had a large portion of their time allocated to this 

project; others only participated in meetings. All in 

all this amounted to about 3-4 full-time persons. In 

order to learn from others, it was decided to work 

closely with an external product line expert. His role 

was to coach the team and monitor the progress and 

the decisions made by the team and to help prevent 

common mistakes. 

The project was intended to take the first steps 

within a relatively short amount of time (about 10 

months). If the project was a success, it was intended 

to make it a long running activity, a so-called line 

organization. 

 

3.2. Finding the Right Way 
 

However the expectations of the project were high 

but diffuse. It seemed that the initial (naïve) idea for 



implementing the product line was the use of a 

library of components from which each product 

project could pick the components it wanted and use 

them. This seemed to be a very nice approach, since 

in theory it should allow the company to be very 

flexible with new products. But on the other hand 

there were doubts within the ESP project team 

whether this idea was realistically applicable for 

Danfoss Drives. 

There was within the team also no agreement on 

the road to take for many other relevant questions. As 

an example of a discussion it can be mentioned that 

one topic was whether managed reuse was possible 

on the just introduced product series or whether it 

was something that should be introduced with the 

next product series. 

It was therefore decided to participate in SPLC 

2005 to learn about best practice for product line 

development, but also as a team building activity. 

Participation in the conference was very 

worthwhile. 

The most important point was that an incremental 

SPLE adoption could be a possible solution [2]. This 

was very pleasant news, since the part of team that 

had knowledge about software product line 

development before the team was formed, had the 

impression that product line development 

necessitated starting from scratch with domain 

modelling.  

The team also understood that it had to consider 

not only the technical issues but also the 

organizational setup with great care. 

 

3.3. Going for 100% platform 
 

The visit to SPLC enabled the ESP project team 

to make decisions on the direction to go and to start 

the productive phase of the work. 

The decision was to analyze whether building all 

products from a common code base controlled by a 

feature model was a viable solution. This approach 

was very much inspired by the experiences of 

Engenio [4]. 

Two tasks were clearly identified. One was to 

derive the common source base. The other was to 

build the feature model. 

To derive a prototype for the common source 

code base, the code branches of the first two product 

projects (which were also two of the major 

contributors of functions) were put together. The goal 

was to identify common parts and also variation 

points from this merge. In order to get the code 

together quickly and to provide both projects a 

working instance of the platform, the merge was done 

in a way that all relevant differences were selectable 

via compiler switches. The GNU diff program is able 

to generate such a merge with a simple command 

line. It is still necessary to have a look at all merged 

files but in most cases the switches were introduced 

correctly. All in all 281 files were unified and they 

had 3165 #ifdef PRODUCT_X chunks. 1003 files 

were identical in both products, 7 files were only 

present in the first product and 179 were only present 

in the second product. Finally 19 files that existed in 

both products were so different, and by nature so, 

that it made no sense to unify them. 

 For building the feature model two approaches 

were tried in parallel. They could be called a top-

down approach and a bottom-up approach. 

The top-down approach was to make a feature 

model for two products as a kind of domain analysis. 

Requirement specifications, product manuals, 

marketing literature and lists of the configuration 

items (parameters) available for the user were used as 

the main inputs for the model. 

The bottom-up approach was to build the feature 

model from the variations found in the existing code 

base. The above described unified code base was 

used as the basis for feature-oriented refactoring. 

Differences were analysed and the initial switch 

condition (PRODUCT_A / PRODUCT_B) were 

successively replaced with switches that related to 

product features instead of product projects. 

It turned out, that the bottom-up approach was 

much more effective than the top-down approach for 

building the feature model. 

 The problem with the top-down approach was 

that although the feature models made sense, it was 

hard to tell whether the feature would serve well for 

inserting variation point in the source code. The 

reason for this was mainly that the feature definitions 

tended to be too fuzzy and it was hard to decide on 

the correct granularity of the features. 

 

3.4. The Big Split 
 

However, after having worked with building a 

feature model and refactoring the prototype for a 

while (two months or less) the idea was born, to 

make a fast release of a partial platform based on the 

prototype as a first step, while still having the long 

term goal of a 100% platform. There were several 

arguments for this. 

 Refactoring the complete prototype would take a 

long time to finish and the team faced the problem 

that while the refactoring took place the projects kept 

working on the (original) files in order to stay in line 

with their development plans. So when the 

refactoring of the prototype was completed it would 

become a big task for the ESP team to update this 

with all the changes from the two projects. 

A partial platform was also seen as an advantage 

for the product projects. Parallel and independent 

finding and fixing of the same bugs could be omitted. 

Furthermore refactoring had found places where the 



two products had grown apart where they were not 

allowed to, since they would no longer have the 

option of using the same set of add-on modules if this 

happened. 

Finally the ESP team was also very eager to get its 

results used by the product projects and get feedback 

from these. 

The selection of the part of the system to be put 

under platform control was rather simple. Based on 

the existing knowledge and discussions within the 

ESP team a coarse split between the initial platform-

managed and the still project-owned system parts 

was made. The division was done on a subsystem 

basis and the selected subsystems were those where 

the team felt it was important not to let them grow 

apart and have unmanaged variations. It turned out 

that about 60% of code files should become 

platform-managed right from the beginning. The idea 

was to increase the platform-managed parts later to 

much more than 60% but not to worry about it for 

now.  

 

3.5. Changes to the development process 
 

With the content of the minimal platform and the 

variation mechanisms for using it in place, it was 

time for the team to think about the maintenance and 

evolution of the platform, i.e. the way the platform 

once brought into the project teams should be further 

developed. This is a major question since a product 

line platform has to constantly be extended in order 

to support new features demanded by the customers 

and also since no software is entirely free from 

defects.  

After looking at different scenarios, it was decided 

to keep as much of the existing development process 

as possible and only to make changes where it was 

really needed.  

It was therefore stated at a high-level; that projects 

are still responsible for the quality of their product 

and will be able to release when needed. They are 

also responsible for fixing bugs found in their 

product. A project producing a feature also has to 

make the tests available together with the new or 

changed features to projects that want to a reuse the 

feature. 

Other high-level guidance was that projects must 

ensure that changes made when adding new features 

do not affect other products not using these features. 

Finally, it was stated that the ESP team is a service 

organization for projects, with the tasks of 

coordinating between projects, ensuring consistent 

software architecture, integrating new features into 

the platform and releasing new platform versions. 

A more detailed approach was derived from these 

higher-level statements. 

A feature-oriented development approach was 

chosen since it fitted the existing practice of separate 

development of features in the project plus regular 

feature integration. It should still be the case that 

features are to be developed by the project teams, 

even those features that are located within the 

platform subsystems. The idea was that this would 

also increase the trust of the project teams in 

platform code since it was partially developed by 

them at their own pace - at least for features where no 

immediate demand from other projects exists. 

 

Product 
Project X 
Release

Platform 
Releases

Product 
Project Y 
Harvesting

feature A

feature A

Predetermined 
dates, a clock 
work!

Product 
release 
dates

Product 
release 

dates
feature B

feature B

 

Figure 3 Feature production and harvesting 
 

Technically each feature is developed in its own 

feature branch, which is merged back into the 

platform for integration. The additional benefit of 

this approach is that a project always has the freedom 

to use its own features currently under development 

if necessary, for instance, if a customer demands a 

quick “feature integration”. However, since the ESP 

coordinates feature development, its responsibility is 

to make sure that a feature eventually becomes part 

of the official platform. This is necessary in order to 

prevent direct exchange of features between projects 

(as was common before the platform). This process is 

depicted in Fehler! Verweisquelle konnte nicht 

gefunden werden. 

Bugs should be fixed in a similar way. Once a bug 

in platform owned code is detected, it will be fixed in 

a bug branch.  

Once a change to the platform (either coming 

from feature or bug branches) is qualified by the ESP 

team as fit for integration into the platform, it 

becomes part of the platform. But qualification 

criteria are not easy to define and check. One of the 

qualification criteria is, for instance, that a new 

optional feature must not introduce changes for any 

product not using this new feature. The question is 

how to check this property easily for all projects 

based on the platform. It was decided that in the 

beginning (with only two projects based on the 

platform) this could be handled by inspections from 

the ESP team, but a more resource efficient solution 

should be identified in the future. 



4. Ready to Roll 
 

Now the technical base (the partial platform) and 

the changes to the development process were in 

place. Based on this it was decided by the 

management of the development department of 

Danfoss Drives to roll out the partial platform at the 

beginning of April 2006. Roll out to the two original 

projects (one being developed at the main 

development site and one in another site) and a third 

project (also located at the main site) started in the 

preceding months was planned to happen that month. 

Roll out to a fourth project (located at yet another 

different site) was planned to happen later. 

An important reason for deciding on a fast roll out 

was that the ESP team hit a window of opportunity. 

To be able to change the development process for a 

project, it has to be in an early phase of a release, 

otherwise changes would be very risky. Thus as part 

of the initial planning the project plans were checked 

and it turned out that April 2006 was a good time, 

since most of the projects would be in the right 

development phase by then. Another thing was, that 

with a later roll out it would no longer be sufficient to 

unify sources from two projects; and unifying from 

three or more sources would be much, much harder.  

This short time frame did in the end also dictate that 

a 100% platform was not achievable. 

Two days after this decision a pre-release of the 

platform occurred. This pre-release was followed by 

a quality assurance workshop, where developers from 

the three projects that were going to use the platform 

first were reviewing and in a few cases modifying the 

refactoring done by the ESP team. This workshop 

probably partly explains why the three projects have 

felt confidence in the platform since the roll out. 

A few working days after the quality workshop the 

first version of the partial platform was finally 

released. In the days after this roll out workshops 

were carried out at both involved sites. These were 

one-day workshops in which the ESP team trained 

the project members where and how the platform-

based development should be done. To make sure 

that the workshop was effective, the timing was such 

that they basically ended with the setup of the project 

development environment for platform development. 

Since no new tools were introduced this was easy. 

The switch over was just to change the version 

control configuration to select the partial platform 

and make a few modifications to the remaining 

product-specific (40%) files. The ESP team had 

prepared these modifications in advance, so they just 

had to be merged in. All this went very well, the 

projects were able to use the platform and contribute 

to it. 

The workshops also served other purposes beside 

the rather technical aspects of definition of the 

process, use of tools etc.. An important effect was 

that the project teams got in personal contact with 

many members of the ESP team in order to lower the 

barrier for communication between the projects and 

the ESP team. Another very important issue was to 

make the role of the ESP team as a service provider 

to the projects clear. 

The effort that the projects had to use for 

switching over was one man-day per developer for 

the roll out workshop plus one to three man-days for 

participation in the quality assurance workshop. Of 

course some time has also been needed for getting 

used to working with the new variation mechanisms, 

but it is not possible to give numbers for this. The 

effort is anticipated to be lower than the savings 

coming from using a platform. 

The rollout was also the start of what was called 

“continuous learning”. It was and is still impossible 

to define in advance the ultimate approach for 

platform development. The learning and adaptation 

of platform development is an explicit part of the 

whole operation. The ESP team felt that it was 

important to express the importance of this 

continuous learning to all stakeholders in such a 

development setup. This makes it easier for project 

teams to accept existing problems in the platform 

development process since improvements can be 

expected once problems become known.  

One important building block of this learning 

process are so-called “Feedback workshops”, 

organized every few months by the ESP team, where 

project members and the ESP team discuss general 

problems with the current platform development 

process and also present ideas on how things could 

be done in the future. These meetings are different 

from normal coordination and planning meetings 

where daily work is being discussed. These have 

proved to be a valuable source of information for the 

ESP team. 

Rollout to one of the development sites was 

delayed so that it first took place in October - 6 

months later. The reason was mainly that the project 

located there was not able to switch over to platform-

based development before that. 

The workshop there also went very well, and as 

with the other projects the switch over was done 

immediately afterwards. In this case a few bugs were 

found, and although ESP team members corrected 

them very quickly, this raised a flag of concern in 

this project team about a lack of testing performed on 

the platform releases. 

So, after the ESP team members returned, this 

project went back to a clone-and-own approach for 

some months. It is not entirely clear why this 

happened. It is true, that there was insufficient 

testing, but despite that, the other projects had 

confidence in the platform releases. The authors tend 

to think that the real reason is that the ESP team had 



failures in contacting and involving this team as 

much as the other project teams in the discussions 

about the platform. As an example, no one from this 

team was invited to participate in the quality 

assurance workshop. As a result the team members 

did not see the introduction of platform development 

as a common project for the organisation as much as 

others did and so lacked for good reason the trust 

necessary to switch over to the platform at this time. 

 

5. Learning to walk 
 

About two months after the mostly successful 

rollout – in December 06 - a feedback workshop was 

held at which all projects were present as well as 

some higher management. Shortly after this 

workshop the external consultant conducted several 

person-to-person interviews with different platform 

stakeholders as part of an ESP operations evaluation.  

The results were all-in-all very positive, the 

majority of the organization believes, even at this 

early point, that the platform migration was already 

showing benefits like improved code quality and 

better coordination of development effort between 

the projects. Everyone expects to see even more 

benefits in the near future especially regarding 

development effort. However, on the other hand all 

of them saw room for improvement in ESP 

operations. Basically there were two key points: 

Increasing the platform managed code base and 

improved communication and documentation from 

the ESP team (process descriptions, feature plans, 

role descriptions …). Some of the findings in this 

phase will be described below. 

It turned out that the initial rollout was one thing, 

keeping a platform alive is another matter. An 

important factor for this is that the platform 

development, which by nature requires more 

coordination between stakeholders, responds quickly 

enough to change requests raised by the project 

teams. This is a crucial point. If the platform changes 

too slowly, projects have to find ways to circumvent 

the platform in order to deliver what the customers 

want. If this situation arises on a large-scale the 

platform becomes obsolete. Since it was not really 

known how fast this integration of changes should be, 

in the beginning there were different time periods 

between the releases and they were basically made on 

demand. The time between two releases was 1 month 

to 3 months (during the summer). Another unknown 

factor was the effort required by the ESP team for 

making a release.  

After the first 4 releases, the release cycle was 

discussed with the projects. The ESP team suggested 

a strict monthly release cycle in order to allow 

synchronization of projects to platform development. 

However some projects argued for a much longer 

release cycle (3 month to 6 months). These were the 

projects that expected to contribute a lot of features 

to the platform. Since they develop these features on 

their own and have access to them before the 

platform integrates them, they wanted fewer 

disturbances by new platform releases. Projects that 

expected to benefit from the platform were interested 

in shorter release cycles. In the end a monthly cycle 

was agreed upon. The monthly platform release is 

done on the third Wednesday each month, a release 

candidate is published one week before, and the 

Friday before this is the deadline for projects to 

submit their input. The basic timing for the releases 

in a year is shown in Figure 4 

 
wk Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1

2

3

4

Product project feature delivery

ESP Release Candidate

ESP Release  
 

Figure 4 Platform Release Cycle 
 

Another concern was the visibility and 

communication of the ESP team with the project 

teams. As mentioned before, in the feedback 

workshops and internal ESP team reflection 

workshops it turned out that the roles and 

responsibilities of the ESP team were not clear. One 

reason for this lack of communication was the 

structure of the team. It consisted primarily of highly 

experienced developers who were focused towards 

inbound communication (bug reports, feature 

requests, planning information, etc.). However, in the 

context of platform development the ESP team had to 

also produce outbound communication (asking for 

feedback, actively getting and distributing 

information about project plans and about the 

platform etc.). Since this problem was detected early 

on, the ESP team itself started to learn to be more 

outward facing. Part of this was an explicit definition 

of roles and responsibilities of the team and its 

individual members and making this known to the 

Danfoss Drives development organization. Another 

part was the formal definition of a communication 

plan, i.e. a list of what kind of information will be 

released regularly and how interaction with the ESP 

team within the Danfoss Drives Software 

Development will happen. 

 

6. Tools 
 

Tools and their use play an important role in 

product line development since, depending on the 

amount of variability and the number of products 

derived from the product line, specialized tools for 



handling this aspect might be necessary. However, 

each change in tools causes not only additional cost 

for the tool itself but also for training and integration 

into the workflow. Since starting platform 

development itself is a risky business, it can be a 

good idea to differentiate between immediately-

required tools and tools which must be brought into 

the game at a later stage. The ESP team discussed 

this issue in the early stages and decided that the 

existing tool set should be sufficient in the beginning. 

 

6.1. Now … 
 

Based on a wish to minimize changes for projects 

it was a goal to try to use the existing and already 

known tools also in the platform development. The 

relevant development tool chain consists of a 

relatively straightforward embedded systems build 

environment based on gcc and make. Configuration 

management is handled by ClearCase [5], defect and 

change tracking is done with ClearQuest [6]. 

Configuration of the system is partially done by 

#define in header files and by inclusion of files into 

the build via makefile includes. 

Until now the necessary project-specific 

configuration of the build configuration was created 

and partly maintained by the ESP team as a service 

for the projects. This was feasible since the 

configurations for a specific project did not change 

often and the number of different configurations to 

maintain was relatively low (about half a dozen)  

 

6.2. … and Then 
 

After the rollout, with the increasing number of 

features being available in the platform, and with 

many new features under development, the situation 

started to change. Specialized tools for handling the 

variability now come into focus in order to be able to 

generate the projects’ configurations automatically 

based on feature selections. Another related aspect is 

the planning and monitoring of feature development 

activities in an easy manner for all stakeholders. 

To achieve this Danfoss Drives is considering 

pure::variants [6] in combination with a project 

planning tool as additionally required tools to be able 

to scale up platform development to more projects. 

A very important tool-related element is support 

for fast and efficient automated testing of platform- 

based products. This is necessary for instance in 

order to evaluate quickly the effects of critical 

changes in the platform. The existing test 

environment is tailored to testing activities related to 

longer product development cycles with explicit 

testing phases. However due to the short release 

cycles for the platform, continuous testing in parallel 

with development is necessary. Here an environment 

based on LabView [8] and TestStand [9] is currently 

being created. 

 

7. Conclusions 
 

At the current time (just after 8 months) the direct 

financial benefits were not yet directly visible in the 

balance sheet of Danfoss Drives. But on the other 

hand no extra effort had been spent on development, 

the allocated manpower was about the same as before 

the start of platform development. All projects were 

able to deliver normally according to project plans. 

This means that within 8 months the initial additional 

effort for creating the platform; the maintenance and 

coordination effort, had been offset by the reduced 

effort for the projects. This will change in the near 

future, with the rollout of new products, since it is 

expected to spend much less effort for those 

(derived) products than would have been necessary 

without platform development. Part of the 

acknowledgement of the achieved result from the 

management side was a hoped-for change of the 

organizational structure. The ESP project became a 

line organization that provides services to projects 

for a possibly infinite duration (as opposed to 

projects, which always have to have a specified end).  

Analyzing the key factors for success, it boils 

down to: massive support of the chosen path 

throughout the organization due to existing positive 

experiences with platforms in other domains within 

Danfoss Drives; the existence of a suitable, well 

accepted software architecture and the construction 

of the ESP team from highly-motivated and 

experienced developers. 

It might be worth mentioning, that the stepwise 

migration where each single step was small enough 

to be easy to understand and with points of return in 

case of serious problems was part of the underlying 

approach and proved to be suitable. The environment 

and the processes should be kept as simple as 

possible. 

The integration of all stakeholders in the learning 

process and the open communication between them 

is also very important, since nothing is perfect. But if 

shortcomings are understood by all, it is much easier 

to find and live with a compromise. 

Within Danfoss Drives the next challenges are 

improved communication among the stakeholders 

and change of processes and tooling with respect to 

the increasing number of variations to be managed 

(release effort reduction, automated quality assurance 

to anticipated and evaluate change effects). Due to 

the positive experiences up to now the ESP team 

believes that these challenges can be mastered if the 

same care is applied as in the migration phase. 

 



8. References 
 
[1] H.P. Jepsen, and F. Nielsen, “A Two-Part Architectural 

Model as Basis for Frequency Converter Product 

Families”, LNCS 1951: Proceedings of the International 

Workshop on Software Architectures for Product Families, 

Springer Verlag, London, UK, 2000, pp. 30-38. 

 

[2] Internal workshop at Danfoss Drives with Dr. Jacques 

van Nieuwland, former General Manager and Chief 

Technology Officer of Philips Consumer Electronics' 

Audio Business Group. December 1999 

 

[3] J. H. Obbink, K. Pohl (Eds.): “Software Product Lines, 

9th International Conference, SPLC 2005”, Rennes, 

France, September 26-29, 2005, Proceedings. Lecture 

Notes in Computer Science 3714 Springer 2005, ISBN 3-

540-28936-4, see also http://www.sse.uni-

due.de/splc2005/ 

 

[4] W.A. Hetrick, C.W. Krueger, and J. G. Moore, 

”Incremental Return on Incremental Investment: Engenio's 

Transition to Software Product Line Practice”, in LNCS 

3714: Proceedings of the 9th International Software 

Product Line Conference 2005, Springer Verlag, 2005. 

 

[5] ClearCase Homepage: http://www-

306.ibm.com/software/awdtools/clearcase/ 

 

[6] ClearQuest Homepage: http://www-

306.ibm.com/software/awdtools/clearquest/index.html 

 

[7] pure::variants Homepage: http://www.pure-

systems.com/pv 

 

[8] LabView Homepage: http://www.ni.com/labview/ 

 

[9] TestStand Homepage: http://www.ni.com/teststand/ 

 


