

www.elektroniknet.de Elektronik automotive 2.2008 33

Variant Management IIII Development + Test

This article has been translated from German and was first published in Elektronik automotive 2.2008

Model Diversity and VariabilityModel Diversity and VariabilityModel Diversity and VariabilityModel Diversity and Variability
he large number of possi-

ble vehicle functions is

now a fundamental char-

acteristic of the automotive indus-

try. Of all the Mercedes Benz C

class cars manufactured in 2006

the number of possible options is

so wide that probably no two

were identical. The background is

rather complex: different geo-

graphical markets have different

legislative requirements and cus-

tomers are given a wide range of

choice, starting from body style

and engine capacity. More par-

ticularly there are the many differ-

ent technical options that are

made possible by electronic sys-

tems. As the majority of these op-

tions and functions are software-

based, embedded software plays a

central role in implementing vehi-

cle functions: functional variabil-

ity in vehicles is automatically

based on variability of the soft-

ware.

The only economical way in

which software variability can be

handled is through systematic re-

use of software artefacts such as

architectural descriptions, system

specifications, software compo-

nents, documentation and testing

data. This can only be achieved if

the structural variability is de-

scribed in a very systematic way,

covering both the variations

within specific software artefacts,

and the compositional variability,

or the way different artefacts are

combined.

The automotive sector is in-

creasingly using models and code

generation to develop embedded

software. Graphical modelling

languages, such as the Matlab /

Simulink / Stateflow tool chain

from The MathWorks, let the de-

signer do specification, modelling

and simulation using signal flow

and state oriented systems. The

result is then turned into executa-

ble code using generators such as

the Real Time Workshop Embed-

ded Coder from The MathWorks

or TargetLink from dSpace.

Simulink models are built by

interconnecting elementary blocks

and state diagram blocks con-

structed from signal flow graphs.

Complex sub-functions can be en-

capsulated as subsystems, which

in turn can be modelled as signal

flow graphs, where the signal

connections between blocks rep-

resent the data exchanged during

simulation of a model. Within

Simulink a selection of elemen-

tary blocks are available, each for

a specific function, such as logical

operations or signal routing.

Handling functional variants in Simulink models

A characteristic of today's motor vehicles is a wide range of variants

with slightly different functions. Since this variability has to be re-

flected in the software development models, it is essential that there

are concepts for systematically handling the variability of functional

models. Differentiating between the central and model specific vari-

ability information allows uniform handling in Simulink and creates

an explicit representation of distributed model variability.

By Christian Dziobek, Joachim Loew, Wojciech Przystas and Jens Weiland

T

www.elektroniknet.de Elektronik automotive 2.2008 34

Development + Test IIII Variant Management

This article has been translated from German and was first published in Elektronik automotive 2.2008

Signal flow graphs describe the

functional algorithm of a real-

time system, primarily based on

elementary blocks. But in practice

the reusable and configurable

functional modules of the basic

algorithm are overlaid by the

needs of modelling and configur-

ing the different function variants,

and Simulink cannot satisfactorily

describe these.

This article describes an ap-

proach to minimizing these de-

scription defects within signal

flow graphs created using Simu-

link / Stateflow. The approach

considers, in particular, what in-

formation is needed to describe

variability within the elementary

blocks and how this information

can be stored.

Only a systematic considera-

tion of variability provides:

���� a uniform description, and sub-

sequently a uniform configura-

tion, of functional variants,

���� specific representation of vari-

ants in signal flow graphs, distin-

guishing between standard blocks

and variant specific blocks,

���� recognition of dependencies be-

tween the different functional

variants.

The implementation described

here is based on Matlab 7.1 and

TargetLink 2.1, although it is pos-

sible to implement these concepts

in just the Matlab tool chain.

���� Modelling Variability
 in Simulink

The approach is based on Product

Family Engineering [1]. The start-

ing point for describing variability

is a Variation Point (Figure 1). A

Variation Point encapsulates the

variability information for each of

the specific function variations to

be added to the Simulink model.

It includes a unique identifier, the

Variability Parameter, and the

Variability Mechanism.

The Variability Parameter acts

as the “tuning knob” of the Simu-

link model and is configured to

select a specific function variant.

It contains a set of values for the

collection of variants from which

it could be configured: a specific

value represents the variant to be

selected.

The Variability Mechanism de-

scribes how functional variability

is implemented in a specific loca-

tion in the Simulink model, ensur-

ing that a specific variant is exe-

cuted in accordance with that

variant’s configuration parame-

ters.

Simulink’s block library con-

tains a number of blocks which

can be invoked to model the vari-

ability mechanism. Examples of

these are:

���� conditionally executable Sub-

systems,

(Enabled Subsystem, Function

Call Subsystem),

���� subsystems (IF block, "Switch

Case" block),

���� "Signal Routing" blocks

(Switch Block, "Multiport

Switch" block, "Manual Switch”

block),

���� logic gates, (AND block, OR

block).

���� configurable Subsystems.

Each of these blocks has its

own mechanism to resolve vari-

able functions. The functional

range of an encapsulated Enabled

Subsystem is activated or deacti-

vated, depending on the value of

the Enabled Signal, making an

Enabled Subsystem particularly

useful for modelling optional

functions. In a similar way op-

tional features

can be enabled

o r d isab led

through the logi-

cal AND or OR

blocks. A vari-

ant can also be

selected via the

Control Signal

of a Switch

Block (com-

parable to a

“Switch Case”

control structure

in C) making the

Switch Block

particularly suitable for modelling

alternative functions.

The majority of these units re-

quire an input signal, which steers

the execution of the Block. Using

a Control Block for selecting a

variant is a good option; it can be

implemented as Constant Block

or “Date Store Read” Block. De-

pending on the value of the con-

trol block, the appropriate variant

is executed.

The Configurable Subsystem is

an exception: its variant is se-

lected via the value of the Block

I Figure 1: Structure of a Variation Point

I Figure 2: Example of a variation point. Execution
is steered via the control block.

! Name/Path

! Selected Variant ! Var. Collection

 Switch Log/Gate ? Control Block

! Variability
 Parameter

! Identifier ! Variability
 Mechanism

! Variation Point

! = verbindlich = alternativ ? = optional

1.. n

. . .

INP_WiperSpeed

INP_VehicleSpeed

USR_ChangeReq

ERR_WiperMove

ACT_WiperSpeed

<INP_WiperSpeed>

<INP_VehicleSpeed>

<USR_ChangeReq>

<ERR_WiperMove>

Wiping_Speed_Adaption

Control Block
Constant
Block

Variability Parameter
VAR_VEHTYPE

Variability-
Mechanism
Enabled-
Subsystem

VAR_VEHTYPE

ROM

www.elektroniknet.de Elektronik automotive 2.2008 35

Variant Management IIII Development + Test

This article has been translated from German and was first published in Elektronik automotive 2.2008

Parameter Block Choice [2],

which contains restrictions for the

time of binding, debugging, and

for representing the Configurable

Subsystem interface.

Figure 2 shows an Enabled

Subsystem, where the running

process is steered via a Constant

Block. The Constant Block can

include the selected variant as a

value, defining the Variability Pa-

rameter by the Block Parameter

Value.

Variable functions may have

effects in several different places

within the model, so it is good

practice to create a central Vari-

ability Parameter in the model- or

base- workspace, which can be re-

ferred to by the Control Block: in

Figure 2 a central Variability Pa-

rameter is VAR_VEHTYPE.

���� "Separation of Concerns"

Once the information relevant for

the modelling of variability in

Simulink has been defined, it has

to be stored in a way that allows a

unified way of handling variabil-

ity despite the different variability

mechanisms. Using a Variation

Point to define the variability that

exists in the Simulink model and

using the Variability Mechanism

to resolve this, makes it possible

to separate variability information

into general and specific ele-

ments (Figure 3):

���� Variability parameters, variant

collection and selected variant

represent general variability infor-

mation and can be stored as ob-

jects of the same type in a central

variant database. Each object has

a unique Variation Point identifier

which can be referenced from the

different control

blocks and vari-

ability mecha-

nisms of the

model; in this

example, data is

modelled as an

object in the

TargetLink Data

Dictionary. Al-

ternatively, it

can be instanti-

ated as a Matlab

Structure, a

Simulink Data

Class, or as an

encapsulated Java

Class, and as a

parameter in the

base model or

workspace.

���� The variability

mechanism and

the associated

control block pro-

vide the specific

elements. Blocks

which express the

variability of the

Simulink model

are defined as

variant specific by an added mask

parameter VAR_INFO, whose

value points to the corresponding

object in the central variant data-

base. Using a mask parameter

means that a unique identifier is

allocated for variability informa-

tion, since block parameters, such

I Figure 3: “Separation of Concerns” for Variabi-
lity Information

I Figure 4: Generic interface for transparent ac-
cess to Variability information

Control Block
(Constant)

VAR_VEHTYPE

Simulink
Model

Mask Parameter
var_info

Central
Repository

VAR_VEHTYPE

TL Data-Dictonary

if(u1==1)
u1 elif(u1==2)

else

Simulink

Variability Mechanism
(If)

Generic Interface

Variant
Block Set Designer

Configuration
Tool

External
Configuration

Tool

VAR_VEHTYPE

TL Data-Dictonary

VPn VP1

Matlab
Environ-

ment

www.elektroniknet.de Elektronik automotive 2.2008 36

Development + Test IIII Variant Management

This article has been translated from German and was first published in Elektronik automotive 2.2008

as Tag or Description, could al-

ready be used for other purposes.

Partitioning the variability in-

formation into a common and a

specific part provides uniform ac-

cess to variability information

through a generic interface to the

central variant database (Figure

4). With this interface, different

blocks with their own mechanism

for the resolution of variable func-

tions can be used as a Variability

Mechanism using an identical

Variation Point structure. The de-

signer can have transparent access

to the variability in a Simulink

model via Matlab functions or via

configuration tools.

As part of developing the sys-

tematic approach to modelling

variability, a separate Variant

Block set was designed. It in-

cludes specially annotated general

Simulink blocks of the library

with a "Callback" parameter

OpenFcn that allows for blocks to

be configured using a special

variant specific dialogue.

���� Model-based Develop-
ment Process

An example will show how vari-

ability modelling using the Vari-

ant Block sets can work (Figure

5). Initially, variant specific

blocks are inserted into the Simu-

link model (Figure 5, bottom

left). These are later configured

using the Variant Specific Dia-

logue (Figure 5, bottom right).

This is called using the "Open

Callback" function Open-Fcn and

allows existing Variation Points

stored in the variant database to

be edited or new Variation Points

to be created. When establishing

a new Variation Point, the Vari-

ability Parameter is defined by:

���� a name and path,

���� values that the parameter can

take,

���� the selected variant.

The Variant Specific Dialogue

also provides a way to input the

block specific information when

using TargetLink blocks.

The Simulink model can be

viewed as tree structure (Figure

5, top right), which can be popu-

lated automatically from the

available information and pro-

vides an explicit representation of

variability. By selecting a variant

specific block, the corresponding

block in the Simulink model is di-

rectly called up.

This transparent access to vari-

ability in a Simulink model offers

a wide range of options for con-

figuration tools. Those tools using

Feature Models form an abstract

view on functional variants, inde-

pendent of the Simulink model

(Figure 6). Features specify do-

main-specific common and vari-

able concepts from a user’s view.

(In Figure 7 the optional selection

I Figure 5: Design of variable functions based on variant block sets

I Figure 7: Configuration of Variability in Simulink Models via Feature
Models using Door Contact information

I Figure 6: Levels of Abstraction
from Feature to Simulink
Model

Features of a Feature Model

Variation Points in
Central Repository

Control Blocks and Variability
Mechanisms in Simulink Model

Reference

Reference

Selected
Variant Model Element

Configure
Variation Point

Automatic
Presentation Var. Info

Generate
Feature Model

Define dependencies
(partially automatic)

Show in
Simulink

www.elektroniknet.de Elektronik automotive 2.2008 37

Variant Management IIII Development + Test

This article has been translated from German and was first published in Elektronik automotive 2.2008

of a door-contact function stops

the wiper when opening a front

door). The result is a comprehen-

sive model of these concepts in-

cluding their dependencies of

model variants (Figure 7, bottom

left), which distinguishes between

necessary, alternative and op-

tional features, as well as (1..n):m

group relations.

The relationships between the

features of a Feature Model and

Variation Points of a Simulink

model and how they can be de-

fined (in Figure 7, bottom mid-

dle, named as Association Model)

are described in Reference [3].

With these relationships it is pos-

sible to assign the value of a vari-

ant specific parameter in a Simu-

link model, to a particular feature

o f t h e Fe a t u r e Mode l :

pure::variants, from pure-systems,

was integrated with the Simulink

models to implement this ap-

proach [4].

In summary, this approach will

help to increase the quality of the

model based software to help it

cope with significant feature

variation.

���� by defining dependencies, a se-

lective search for distributed vari-

ability in a Simulink model be-

comes possible, retrieving both

the feature which influences the

Variability Point of the Simulink

model and those features a Vari-

ability Point depends upon.

���� it is possible to automatically

generate valid configurations for a

Simulink model from the Feature

Model, e.g. from a parameter set

or a configuration instruction.

���� coupling Simulink models with

feature models makes it possible

to search for contradictions in

configurations of functional mod-

els with complex variabilities.

���� variability in Simulink models

is explicitly visible. All of the

variabilities are represented by

variant specific blocks in the

Simulink model and a common

variant database, where all of the

variabilities of a Simulink model

are centrally managed.

The concepts presented have

been developed as part of a re-

search project and are currently in

production use for a Mercedes car

development. A special Variant

Block set, an API based on Mat-

lab functions, and a configuration

tool have been specifically imple-

mented to achieve this. hs/ms

Literature: Original

[1] Czarnecki, K.; Eisenecker.

U.: Generative Programming
– Methods, Tools, and Appli-
cations. Addison-Wesley,
Boston, MA, 2000.

[2] Weiland, J.; Richter, E.: Kon-
figurationsmanagement vari-
antenreicher Simulink-
Modelle. A.B. Cremers et.al.

(Hrsg.): INFORMATIK 2005 –
Informatik LIVE!. Band 2.
Beiträge der 35. Jahresta-
gung der Gesellschaft für In-
formatik e.V. (GI). 19. – 22.
September 2005. Kölln Ver-
lag, Bonn, 2005.

[3] Klengel, K.; Weiland, J.:
Merkmalbasierte Konfigura-
tion variantenreicher Simu-
link- Modelle. H. Dörr, T.
Klein: Unterlagen zum Work-
shop „Modellbasierte
Entwicklung von eingebet-
teten Fahrzeugfunktionen“,
Modellierung 2006. 22. – 24.
März 2006. Innsbruck,
Österreich, 2006.

[4] pure-systems GmbH,
pure::variants. Eclipse
Plugin User Guide, 2007.

Dipl.-Ing.
Christian Dziobek

studied Electrical Engineering at RWTH
Aachen. He has worked at Daimler AG
since 1998, specifically on the introduc-
tion of methods and tools for model-
based function development at depart-
ment E/E for series car development.
christian.dziobek@daimler.com

Dipl.-Ing.
Joachim Loew

studied Aerospace Engineering at Stutt-
gart University. He has worked at Daimler
AG since 1998. His responsibilities in-
clude the development of model-based
function design tools for ECUs.
joachim.c.loew@daimler.com

Dipl.-Inf.
Wojciech Przytas

studied Computer Science and Computer
Linguistics at Stuttgart University. He be-
came a doctoral student at Daimler-AG-
Research in 2007 and works mainly on
variant configuration of model-based em-
bedded software.
wojciech.przystas@daimler.com

Dipl.-Inf.
Jens Weiland

studied Computer Science at
Bundeswehr University in Munich. Since
2000 he has headed research projects at
Daimler-AG Research. His focal point is
variant configuration of model-based em-
bedded software.
jens.weiland@daimler.com

