
Generating Visual Studio Project Files

Table of Contents
1. Overview ... 1
2. About this tutorial ... 1
3. Setting up the pure::variants project ... 1
4. Setting up the feature model .. 3
5. Setting up the family model ... 3
6. Setting up the transformation ... 7
7. Generating a variant .. 8
8. Adding the build options ... 9

1. Overview

This tutorial shows how to generate variable Visual Studio project files. As well as setting
project options, files which are needed for the build will be added.

For the purposes of the tutorial a configurable program will be creates that prints a given
number or the square of the given number. A feature, Square, controls this behaviour. De-
bug and Release features may also be selected for the build.

2. About this tutorial

The reader of this tutorial should have basic knowledge of pure::variants and how the
pure::variants Standard Transformation works. Please consult pure::variants introduct-
ory material before reading this tutorial.

This tutorial is available as online help or in a printable PDF format here.

3. Setting up the pure::variants project

The first step is to create a pure::variants project. Switch to the Variant Management per-
spective and open a Context menu (right mouse click) in the Variant Projects view. Select
New -> Variant Project from the popup menu. Enter "VS Project File Example" as the
project name and leave all other values as they are.

1

Figure 1. The new project wizard

Press the Finish button to create the project. Inside the project there is a feature model, a
family model, a configuration space and a variant model. pure::variants opens all created
models automatically.

Figure 2. The created project structure

In the next step you need to create the source files. To do this create a source folder inside
the project. Select the project VS Project File Example and click the right mouse button.
Select the New -> Folder menu item from the context menu. Enter "Source" as the folder
name and click Finish.

Now open Visual Studio and create an empty Visual C++ Win32 Console Project named
"foo". Deselect Create directory for Solution on the project dialog page. Then copy the
project and solution files (foo.sln and foo.vcproj) into the Source directory.

Figure 3. The copied Visual Studio project and the solution file

All files referred to by ps:file source elements in the family model will be added to the VS

Generating Visual Studio Project Files

2

project during the transformation.

As next you need the main function. Create a file main.c in the Source folder with the
following content:

#include "foo.h"
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char** argv) {
int x = atoi(argv[1]);
printf("Running version %s\n", VERSION_STRING);
printf("foo(%d) = %d\n",x,foo(x));
return 0;

}

Create a header file foo.h with the following content:

int foo (int value);

Now implement two variants of the function foo. The first one simply returns the given
value. It is implemented in the file foo.c.

int foo (int value) {
return value;

}

The second variant returns the square of the given value. It is implemented in the file
foosquare.c.

int foo (int value) {
return value*value;

}

The final project structure should look like the Figure 4 below.

Figure 4. The final project structure

4. Setting up the feature model

Select the feature model editor VS Project File Example.xfm and create a new
feature below the root feature. Right click the root feature VS Project File Example and
select New -> Generic Feature from the context menu. The new feature wizard will be
opened. Enter "Square" in the Unique Name field and change the type to ps:optional. After
clicking the Finish button the new feature will be created. Save the changes in the model.

5. Setting up the family model

Go to the family model editor VS Project File Example.ccfm and create a new
component. Right click the root element VS Project File Example and select New ->

Generating Visual Studio Project Files

3

Component from the context menu. Enter "Program" as the Unique Name and click Finish.
Tthe dir attribute is required for several child elements and since it has the same value in
most cases the attribute will be created on the Program component and set as inheritable.
Click the right mouse button on Program and select New -> Attribute from the context
menu. Name the attribute "dir". Select type ps:directory and set the value to ".". Now select
the inheritable option for the created attribute. This means that all children will inherit
this value and so do not need to define it themselves.

Figure 5. The inheritable attribute for all child elements

Right click the Program component and select the New -> Object context menu item. In
the dialog that opens enter "Solution" as Unique Name. After clicking Finish you get a new
model element Solution below the component Program. Next you have to specify where
the project file is located. Create a file element below the Solution element to do this.
Right click the Solution element and select New -> File in the context menu. In the editor
that opens enter "foo.sln" into the file input field. The dir attribute is inherited by selecting
the inherit check box. The type field is set to misc.

Figure 6. The file wizard

After pressing the Finish button we get the following model structure like in Figure 7 be-
low. If there are no attributes values in the model select the Show In Tree -> Attributes
context menu entry of the family model editor. The family model should now show the fol-
lowing elements.

Generating Visual Studio Project Files

4

Figure 7. The family model with the foo solution file

For the main.c file you have to perform the same actions as for the foo project file. Cre-
ate an object with "Main" as Unique Name. Below this add a file element. The file attribute
is set to "main.c". The dir attribute is also inherited. Because this is an implementation file
set the type attribute to impl. This will add the file to the Files section of the VS project
file generated during the transformation process.

The last element in the family model is an object for the function foo. Create another object
with "Foo" as Unique Name. For this object you have to add two files. The first is the head-
er file foo.h and the second is the implementation file foo.c. Create a file element for
the header file. Set the file attribute to "foo.h", the type attribute to def and inherit the dir-
ectory. For the implementation file create also a file element. The file attribute is set to
"foo.c". The type attribute is set to impl. The dir attribute is inherited. Additionally we set
the srcfile attribute to "foosquare.c".

Figure 8. The file definition for foo.c

Setting the srcfile attribute selects an alternative source file for the file foo.c . During the
transformation, the source file is transferred to the destination and renamed to the name
specified by the file attribute. If the scrfile attribute is unset then the source and destination
name are equal and used from the file attribute. You have to set the source file name to
"foosquare.c" which contains the square implementation. Press Finish to create the file ele-
ment.

Because this implementation should used only if the feature Square is selected, you need

Generating Visual Studio Project Files

5

to add a restriction to the attribute scrfile. Right click the scrfile attribute in the tree and se-
lect New -> Restriction from the context menu. In the dialog that opens a new restriction is
already created and the input line for the restriction code is activated. You can now enter
the code for the restriction or use the restriction pilot. To open the restriction pilot press the
"..." button at the right end of the input line.

Figure 9. Open the restriction pilot

Select the operation hasFeature. Now you have to choose the desired feature. Press the
"..." button on the right side of the value field. Select the Square feature in the element se-
lection dialog that opens by moving it to the right hand side. After closing the element se-
lection dialog the restriction pilot shows the final restriction code in the lower part of the
dialog.

Figure 10. The restriction pilot

After clicking OK you get the model as shown in Figure 11. The scrfile attribute is restric-
ted and will only appear if the Square feature is selected. If the restriction is not shown in
the tree then open the Show In Tree context menu item again and select the Restrictions
item. Save the model.

Generating Visual Studio Project Files

6

Figure 11. The final family model

6. Setting up the transformation

Before you perform a transformation you have to specify some options. Go to the Variant
Projects view and select the VS Project File Example configuration space. Open the prop-
erties dialog and select the Configuration Space page. Switch to the Input-Output tab to
set the input and output directories. Enter "$(PROJECT)\Source" into the input path field
and "$(PROJECT\Output" into the output path field. Set all directory options as shown in
Figure 12, "The input and output configuration".

Figure 12. The input and output configuration

In order to create a VS project file you need to enable the VS project transformation mod-
ule. Switch to the Transformation Configuration tab and add a new module by pressing the
Add button on the right side. In the dialog that opens check the vcproject module as in Fig-
ure 13 and enter "Generate Project File" as the module name.

Generating Visual Studio Project Files

7

Figure 13. Adding the VS project transformation module

Click the Next button to enter the module parameters. The VS project module has two para-
meters named out and template. The first parameter is the file name of the vs project file to
be created during the transformation. Set the out parameter to "foo.vcproj". Set the value of
the template parameter to "foo.vcproj".

Figure 14. The vs project module parameter dialog

Click Finish and OK to store the transformation configuration.

7. Generating a variant

Before a transformation can be performed you must first create a variant. Open the variant
model by double-clicking the VS Project File Example.vdm file in the configur-
ation space. Select the Square feature and press the Transform Model button. Confirm
the next messages.

Generating Visual Studio Project Files

8

Figure 15. Start the transformation

The transformation should generate the directory structure shown in Figure 16, "The result-
ing directory structure" (refresh the Project View if the output directory is not shown). The
foo.c file should contain the implementation from the foosquare.c file.

Figure 16. The resulting directory structure

The foo.vcproj contains all files of the project.

Change the selection of the Square feature and perform another transformation. Now the
foo.c file should contain the code from the foo.c file of the Source folder. To build the
project open foo.vcproj in the Output directory with Visual Studio and build the solu-
tion. The program foo should be built.

8. Adding the build options

To configure the build options add two more alternative features into the feature model.
The features are named "Release" and "Debug". The feature model should now look like
Figure 17, "The feature model with build options".

Figure 17. The feature model with build options

You need to add a variable in the family model VS Project File Example.ccfm.
Right click the Program component and select New -> Variable. In the dialog that opens
enter "VERSION_STRING" as the Unique Name. The attribute Value should be set to
"VERSION_STRING=\"1.0(Release)"". This value should be used for the Release build

Generating Visual Studio Project Files

9

configuration. Click Finish button to create the variable.

Figure 18. Creating the VERSION_STRING variable

For the other configuration create another value for the attribute Value. Right click the
Value attribute of the variable and select New -> Attribute Value in the context menu. In
the dialog that opens enter "VERSION_STRING=\"1.0(Debug)"" for the Debug configura-
tion. Now the family model should look like Figure 19, "The family model with build op-
tions".

Figure 19. The family model with build options

Now you need to add a restriction to every value. Right click the first value VER-
SION_STRING=\"1.0(Release) and select New -> Restriction from the context menu.
Open the restriction pilot and create the following restriction:

hasFeature('Release')

For the second value VERSION_STRING=\"1.0(Debug) we create the restriction:

hasFeature('Debug')

As the last step you have to specify where the VERSION_STRING variable should be
stored. For this create a Visual Studio Project Option Element. Right click the VER-
SION_STRING variable and select VS Project Option from the context menu. The option
input field is definition and the operation is set to set.

Generating Visual Studio Project Files

10

Figure 20. The Visual Studio Project Option element

After pressing the Finish button the family model look like in the Figure 21, below.

Figure 21. The final family model

After the next transformation you have the preprocessor definition VERSION_STRING
variable in the VS project file.

The value depends on the selection of the Release or Debug feature. To begin select the
Release feature in the VS Project File Example.vdm and start the transforma-
tion.

Generating Visual Studio Project Files

11

Figure 22. Selected Release feature

After performing the transformation open the foo.vcproj file from Output directory
with Visual Studio. In the next step build the project in the Visual Studio in Release mode.
The built program will be found in the Output\Release directory. Now you can run the
program with value say 3.

foo.exe 3

The output look like following code:

Running version 1.0(Release)
foo(3) = 9

The version is here Release.

To run the program in Debug mode select the Debug feature in the VS Project File
Example.vdm and start the transformation again.

Figure 23. Selected Debug feature

The VS project file is in the Output directory and open foo.vcproj file with Visual
Studio like for Release feature transformation. But now build the project with Debug
mode in Visual Studio. The program to run is found in the Output\Debug directory. We
run the program with value 3 again.

foo.exe 3

And the output looks like this:

Running version 1.0(Debug)
foo(3) = 9

We can see the version has changed to Debug.

Generating Visual Studio Project Files

12

	Generating Visual Studio Project Files
	Table of Contents
	1. Overview
	2. About this tutorial
	3. Setting up the pure::variants project
	4. Setting up the feature model
	5. Setting up the family model
	6. Setting up the transformation
	7. Generating a variant
	8. Adding the build options

