
Tutorial On Generating Variants Using XSLT

Table of Contents
1. Overview ....................................................................................................... 1
2. About this tutorial ........................................................................................... 1
3. Setting up the pure::variants project ................................................................. 1
4. Setting up the feature model ............................................................................ 4
5. Setting up the family model ............................................................................. 4
6. Setting up the XSLT script .............................................................................. 6
7. Setting up the transformation ........................................................................... 9
8. Generating a variant ........................................................................................ 9

1. Overview

This tutorial demonstrates how to generate a variant using XSLT transformations on the
example of a simple shop project. The products sold in the shop, i.e. laptops, consist of the
same components in different variants. According to the chosen product, an order form
shall be generated listing the components, the price of each component, and the total sum
of the order. This order form shall be plain HTML that is generated using an XSLT script
executed in an XSLT transformation.

These are the steps to perform for realizing this shop using pure::variants.

1. A new pure::variants project for the shop has to be created.

2. The products of the shop, i.e. the laptop variants, have to be modelled in a feature mod-
el.

3. The components of the products have to be modelled in a family model.

4. An XSLT script has to be written for generating the HTML order form.

5. Finally an XSLT transformation has to be set up using the XSLT script to generate the
order form.

2. About this tutorial

The reader of this tutorial is expected to have basic knowledge about pure::variants.
Please consult the pure::variants introductory material before reading this tutorial. This
tutorial is available in online help or in printable PDF format here.

3. Setting up the pure::variants project

The first step to realize the shop is to create a new pure::variants project. Switch to the
Variant Management perspective and choose New -> Variant Project from the context
menu of the Variant Projects view. Enter "XSLT Transformation Example" as project
name, choose Custom project type, and click Next two times.

1



Figure 1. The new project wizard

On the Feature Models page enter "Products" as model name and click Add. This adds a
new feature model with the name "Products" to the project.

Figure 2. Adding a feature model

Click Next and enter "Components" as family model name and click Add. This adds a new
family model with the name "Components" to the project.

Tutorial On Generating Variants Using
XSLT

2



Figure 3. Adding a family model

Click Next. On the Config Space page enter "Configuration" for both the configuration
space name and the variant description name. Ensure that "Products.xfm" and "Compon-
ents.ccfm" are selected. This adds a configuration space and a variant description model to
the project.

Figure 4. Adding the configuration space and variant description
model

Tutorial On Generating Variants Using
XSLT

3



After clicking on Finish, the basic project structure is created including the models and the
configuration space.

Figure 5. The resulting project structure

4. Setting up the feature model

The next step is to create the feature model listing the products of the shop. To keep this
example short only two laptop variants are available, i.e. a compact office laptop and a
high end gaming laptop.

Open the feature model Products.xfm by double-clicking on it in the Variant Projects
view. Right click on the root feature of the model and select New -> Generic Feature from
the context menu. In the New Feature wizard that is opened enter "Gaming Laptop" as the
visible name and "Gaming" as the unique name. Select Alternative variation type to make
this feature member of an alternative feature group from which only one feature can be se-
lected in a variant. After clicking Finish the new feature is created. Perform the same steps
to create a second feature with the unique name "Office" and the visible name "Office
Laptop".

This is all to do for setting up the feature model (see Figure 6, “The Products feature mod-
el”).

Figure 6. The Products feature model

5. Setting up the family model

After setting up the feature model, listing the products of the shop, the next step is now to
create the family model describing the components of the products, i.e. the two laptop vari-
ants. For simplicity reason only three laptop components are modelled: the hard disc, the
display, and the memory.

To model the hard disc component, open the family model Components.ccfm by
double-clicking on it in the Variant Projects view. Right click on the root element of the

Tutorial On Generating Variants Using
XSLT

4



model and choose New->Component from the context menu. In the wizard that is opened
enter "Hard Disc" as the visible name and click Finish. A new component with the name
"Hard Disc" is created.

For the two laptop variants two different sized hard discs are available, i.e. 60GB and
100GB. Right click on the new component Hard Disc and choose New->Generic Element
from the context menu. Enter "60GB" as the visible name and "size" as element type in the
wizard that is opened. Switch to the Restrictions page of the wizard. Click on Add to add a
new restriction. Enter "hasFeature('Office')" as restriction expression. This restriction ef-
fects that only office laptops will be sold with a 60GB hard disc. Switch to the Attributes
page of the wizard and click on button Add. Enter "Prize" as name of the attribute, select
"ps:integer" as attribute type, and enter "100" as attribute value. This means that the 60GB
hard disc costs 100 EUR.

For the hard disc of the gaming laptop, copy the element 60GB by right-clicking on it and
choose Copy from the context menu. Right-click on the element Hard Disc and choose
Paste from the context menu. A copy of the element 60GB is inserted below the element
Hard Disc. Double-click on this element and change its visible name to 100GB. Switch to
the Attributes page of the dialog and change the value of attribute Prize to "150". Finally
switch to the Restrictions page and change the restriction expression to "hasFea-
ture('Gaming')".

This is all to do for modelling the different hard disc sizes for the two laptop variants. Now
perform the same steps to add the two remaining components Display and Memory. See
Figure 7, “The three components Hard Disc, Display and Memory” for the sizes and prizes
of the displays and memory chips.

Figure 7. The three components Hard Disc, Display and Memory

Tutorial On Generating Variants Using
XSLT

5



After that the family model is nearly finished. For the generation of the order form, the
total sum of the components of the chosen laptop variant is needed. For that purpose create
a new attribute on the element Components by right-clicking on it and choosing New-
>Attribute from the context menu. Enter "Total" as name of the new attribute and set the
attribute type to "ps:integer". Now click into the Value field of the new attribute and there
on button "...". In the dialog that is opened select "Calculation" as kind of the attribute
value and enter the following text into the input field.

getContext(EID),
sumSelectedSubtreeAttributes(EID,'Prize',Sum),
Value is 500+Sum

This code calculates the total sum of the components of the chosen laptop variant. First the
values of all attributes with the name "Prize" on the elements of the family model are sum-
marized. Depending on the selected laptop variant only the components of the office resp.
gaming laptop are in the variant, and thus only the prizes of these components are summar-
ized. Since the base prize of the laptop shall be 500 EUR, the total sum of the selected
laptop is the prize of the components plus 500 EUR.

6. Setting up the XSLT script

The generation of the order form shall be realized using a simple XSLT transformation.
For this purpose a corresponding XSLT script is needed that is executed by the XSLT
transformation. This XSLT script shall produce a simple HTML page with a title, the list of
components for the chosen laptop variant, the size and price of each component, and the
total sum of the order.

Create a new file in the root directory of the project by right-clicking on the name of the
project in the Variant Projects view and choose New->File from the context menu. Enter
"genhtml.xsl" as the name of the file in the dialog that is opened and click Finish. The new
file is created and opened. Enter the following text and save the file.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:cm="http://www.pure-systems.com/consul/model"
xmlns:pv="http://www.pure-systems.com/purevariants"
extension-element-prefixes="pv">

<!-- generate indented html output -->
<xsl:output method="html" indent="yes"/>

<!-- build element id map -->
<xsl:key name="element-by-id" match="cm:elements/cm:element"

use="@cm:id"/>

<!-- select all family models -->
<xsl:variable name="model" select="//cm:consulmodel[@cm:type='ps:ccm']"/>

<!-- begin html generation -->
<xsl:template match="/">

<html>
<head/>
<body>

<xsl:if test="pv:hasFeature('Office')">
<h1>Office Laptop</h1><hr/>

</xsl:if>
<xsl:if test="pv:hasFeature('Gaming')">
<h1>Gaming Laptop</h1><hr/>

</xsl:if>
<xsl:for-each

select="key('element-by-id',$model/cm:elements/@cm:rootid)">
<xsl:call-template name="list-components"/>

</xsl:for-each>
<hr/>
<p><b><u>
Total (+500 EUR base) =

Tutorial On Generating Variants Using
XSLT

6



<xsl:value-of select="$model//cm:property[@cm:name='Total']"/> EUR
</u></b></p>

</body>
</html>

</xsl:template>

<!-- list the components of the product -->
<xsl:template name="list-components">
<!-- list the current component -->
<xsl:call-template name="list-component"/>
<!-- iterate child elements -->
<xsl:for-each

select="cm:relations[@cm:class='ps:children']/cm:relation/cm:target">
<xsl:for-each select="key('element-by-id',substring-after(.,'/'))">

<!-- traverse subtree of child element -->
<xsl:call-template name="list-components"/>

</xsl:for-each>
</xsl:for-each>

</xsl:template>

<!-- generate html for a component -->
<xsl:template name="list-component">
<xsl:if test="@cm:type='ps:component'">
<h2><i><xsl:value-of select="cm:vname"/></i></h2>

</xsl:if>
<xsl:if test="@cm:type='size'">
<p>

<xsl:value-of select="cm:vname"/> :
<b><xsl:value-of select=".//cm:property[@cm:name='Prize']"/></b>
EUR

</p>
</xsl:if>

</xsl:template>

</xsl:stylesheet>

For a better understanding of how this XSLT script works, a short description of the parts
of the script is given in the following.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:cm="http://www.pure-systems.com/consul/model"
xmlns:pv="http://www.pure-systems.com/purevariants"
extension-element-prefixes="pv">

Each XSLT script is surrounded by a stylesheet tag. Here it can be specified which
XSLT extensions are used in the script. For the order form the pure::variants XSLT ex-
tensions are used.

<!-- generate indented html output -->
<xsl:output method="html" indent="yes"/>

This line specifies that the output of the script is HTML. Additionally indentation of the
generated HTML is enabled.

<!-- build element id map -->
<xsl:key name="element-by-id" match="cm:elements/cm:element"

use="@cm:id"/>

This line builds an unqiue identifier to element map. The map will be used later in the
script to access model elements by its unique identifier while traversing the models.

<!-- select all family models -->
<xsl:variable name="model" select="//cm:consulmodel[@cm:type='ps:ccm']"/>

This line defines a variable named model containing all concrete family models of the
variant that is transformed, i.e. the concrete variant of model Components in this case. The

Tutorial On Generating Variants Using
XSLT

7



1The XML representation of the concrete model variants.

concrete family model contains all the information needed for the order form, i.e. the
laptop components, the sizes and prizes, and the calculated total sum of the order.

<!-- begin html generation -->
<xsl:template match="/">

<html>
<head/>
<body>

<xsl:if test="pv:hasFeature('Office')">
<h1>Office Laptop</h1><hr/>

</xsl:if>
<xsl:if test="pv:hasFeature('Gaming')">
<h1>Gaming Laptop</h1><hr/>

</xsl:if>
<xsl:for-each

select="key('element-by-id',$model/cm:elements/@cm:rootid)">
<xsl:call-template name="list-components"/>

</xsl:for-each>
<hr/>
<p><b><u>
Total (+500 EUR base) =
<xsl:value-of select="$model//cm:property[@cm:name='Total']"/> EUR

</u></b></p>
</body>

</html>
</xsl:template>

This script part is the starting point of the order form generation. The template tag is
used to find and process a specific position in the input XML document1. In this case the
root node of the input XML document is matched. Here the basic HTML structure of the
order form is generated. Depending on whether feature Office or Gaming is selected in the
variant description model, and thus the order form for an office or gaming laptop is to be
generated, the title of the HTML page is set to "Office Laptop" or "Gaming Laptop". To
find out which feature is selected, the pure::variants XSLT extension function hasFea-
ture is used.

After the title of the page is generated the components of the laptop are listed. Starting at
the root element of the family model, using variable model, the model is traversed by call-
ing the template list-components described below.

Finally the total sum of the order is printed simply by printing the calculated value of the
attribute Total.

<!-- list the components of the product -->
<xsl:template name="list-components">

<!-- list the current component -->
<xsl:call-template name="list-component"/>
<!-- iterate child elements -->
<xsl:for-each

select="cm:relations[@cm:class='ps:children']/cm:relation/cm:target">
<xsl:for-each select="key('element-by-id',substring-after(.,'/'))">

<!-- traverse subtree of child element -->
<xsl:call-template name="list-components"/>

</xsl:for-each>
</xsl:for-each>

</xsl:template>

This script part traverses the family model to print the list of components by iterating the
children of the current model element and calling itself recursively for each child element.
Here the previously created map is used to access the child elements of an element by its
unique identifier. It is not necessary to use the map for this task, but it speeds up the script.

While traversing the model, for each model element the template list-component is
called.

<!-- generate html for a component -->

Tutorial On Generating Variants Using
XSLT

8



<xsl:template name="list-component">
<xsl:if test="@cm:type='ps:component'">
<h2><i><xsl:value-of select="cm:vname"/></i></h2>

</xsl:if>
<xsl:if test="@cm:type='size'">
<p>

<xsl:value-of select="cm:vname"/> :
<b><xsl:value-of select=".//cm:property[@cm:name='Prize']"/></b>
EUR

</p>
</xsl:if>

</xsl:template>

This part of the script generates a list entry for a component of the laptop. It is executed
either for a general component of the laptop, like hard disc or display, or for a specific vari-
ant of this component, like 60GB hard disc or 17in display. In the first case the visible
name of the general component is printed. In the second case the specific size of the com-
ponent is printed followed by its price.

7. Setting up the transformation

For the transformation some configuration options have to be set. Switch to the Variant
Projects view and right-click on the name of the configuration space Configuration. Select
Properties from the context menu and switch to the Configuration Space page of the dialog
that is opened. On the Input-Output tab of the dialog enter "$(PROJECT)" as input and
"$(PROJECT)\Output" as output directory for the transformation. Enable at least the
"Clear transformation output directory" and "Create transformation output directory" check
boxes.

Figure 8. The input and output paths configuration

Switch to the Transformation Configuration tab and click on button Add. In the dialog that
is opened select the XSLT script execution module used to execute the XSLT script for
generating the order form. Enter "Generate HTML" as name of the module and click Next.
On the Module Parameters page enter "$(PROJECT)/genhtml.xsl" as value of attribute in
and "offer.html" as value of attribute out. After clicking Finish the XSLT transformation
module is added to the configuration. When the transformation is started this configuration
means that the XSLT execution module executes the script genhtml.xsl and writes the
output of the script to the file offer.html in the transformation output directory Out-
put.

Tutorial On Generating Variants Using
XSLT

9



8. Generating a variant

Now the project is prepared to start a first transformation. Open the variant description
model by double-clicking on the file Configuration.vdm in the configuration space
folder. Select the feature Gaming Laptop and click on the tool bar button Transform
Model. This will start the generation of the HTML order form for a gaming laptop. After
the transformation is finished refresh the project in the Variant Projects view by selecting
the project and pressing key F5. The new directory Output appears in the project contain-
ing the generated HTML file order.html (see Figure 9, “After the transformation”).

Figure 9. After the transformation

Figure 10, “Order form for the gaming and office laptop” shows the generated order forms
for both the gaming laptop and the office laptop.

Figure 10. Order form for the gaming and office laptop

Tutorial On Generating Variants Using
XSLT

10


	Tutorial On Generating Variants Using XSLT
	Table of Contents
	1. Overview
	2. About this tutorial
	3. Setting up the pure::variants project
	4. Setting up the feature model
	5. Setting up the family model
	6. Setting up the XSLT script
	7. Setting up the transformation
	8. Generating a variant

