

White Paper

Efficient Management of Tests and Defects in Variant-Rich Systems

with pure::variants and IBM Rational ClearQuest

PublisherPublisherPublisherPublisher
© pure-systems GmbH

Agnetenstrasse 14

39106 Magdeburg

http://www.pure-systems.com

ContactsContactsContactsContacts

Taha BoulaguigueTaha BoulaguigueTaha BoulaguigueTaha Boulaguigue

IBM Deutschland GmbH

Boulaguigue@de.ibm.com

Dave GööckDave GööckDave GööckDave Gööck

pure-systems GmbH

dave.goeoeck@pure-systems.com

+49 391 544569 41

White Paper pure::variants Connector for ClearQuest

 2 / 19

Table of ContentsTable of ContentsTable of ContentsTable of Contents

1. Introduction ...3
1.1. Variant Management in the Product / Application Life Cycle...3
1.2. Variant Management in Test Management & Defect Tracking..4

1.2.1. The use for Deployment, QA, Analysis, Visualization ..4
1.2.2. Improvement of Test Management / Defect Tracking ..4

2. Introducing the Solution..5
2.1. IBM Rational Tool Environment ..5

2.1.1. IBM Rational Software Delivery Platform..5
2.1.2. IBM Rational ClearQuest ..5

2.2. Variant Management with pure::variants ...7
2.2.1. Technology Fundamentals..8

2.3. pure::variants Connector for ClearQuest ..9
3. Test management example:..11

3.1. Preparation of ClearQuest ...11
3.2. Preparation of pure::variants ..11
3.3. Create and configure tests in ClearQuest...11
3.4. Link tests with pure::variants ..12
3.5. Create test logs in ClearQuest ..13
3.6. Show test results in pure::variants...13

4. Defect Tracking example: ...15
4.1. Preparations ...15
4.2. Link defects with pure::variants..15
4.3. Show defect status information in pure::variants ...16
4.4. Change the defect state in ClearQuest..17

5. Future development of the Connector ..18
6. References...19

White Paper pure::variants Connector for ClearQuest

 3 / 19

1.1.1.1. IntrodIntrodIntrodIntroductionuctionuctionuction
Related products frequently share much of the same software, with only a few differences

realizing product-specific functionality. The product line approach separates parts of products

into commonalities and differences. Commonalities being those components that are con-

tained in every product variant. Efficient use of this approach is a challenge but in its imple-

mentation – variant management – there is high potential to significantly increase the efficient

use and reuse of resources. With variant management, knowledge about the functionality of

the different product features, requirements and dependencies will be managed much more

efficiently, kept more accessible and can consequently be utilized more successfully.

This white paper shows how to manage defects and tests in systems with many variants in a

more efficient way, by the use of variant management. This approach can have huge potential,

particularly with regard to software product lines.

1.1.1.1.1.1.1.1. Variant Management in the Product / Application LifeVariant Management in the Product / Application LifeVariant Management in the Product / Application LifeVariant Management in the Product / Application Life C C C Cycycycyclelelele

Variant management is a general activity, which plays an important role in the entire life cycle

of product (application) development. For this reason a smooth and effective integration of a

variant management tool into the constituted tool environment is necessary for maximum

efficiency.

A binding to an existing requirements management tool can be used for automatic generation

of feature models (see section 2.2.1.1 Feature Modelling), to enrich them with variability infor-

mation and to make requirements information available in other steps of the development

process. By linking variant management with the tools used for design and implementation

purposes, simple import of family models (see section 2.2.1.2 Family Modelling) becomes

possible and therefore efficient development of variant specific implementations. Beyond that

if configuration management is enriched to handle variants, generation and building of spe-

cific solutions can be done easily.

But the product life cycle is not finished with the finished implementation of software, the

domains of test management and defect tracking become more important, particularly with the

growth of software complexity, so it is indispensable to devote particular attention to the build

of variants. Furthermore, the availability of information about the workflow-state of the differ-

ent components of the product line with respect to their variability or variant membership can

increase the product quality as well as the effectiveness of the development process.

Variant Management and the Application Life Cycle

V
a
ri
a
n
t
M

a
n
a
g
e
m

e
n
t

p
u
re

::v
a
ri
a
n
ts

—

Requirements Management — RequisitePro

Test Management, Defect Tracking — ClearQuest

Configuration Management — ClearCase

Software Design

and Implementation
Software Architect /

Systems Developer

White Paper pure::variants Connector for ClearQuest

 4 / 19

1.2.1.2.1.2.1.2. Variant Management in Test Management & Defect TrackingVariant Management in Test Management & Defect TrackingVariant Management in Test Management & Defect TrackingVariant Management in Test Management & Defect Tracking

As described, variant management is a general activity, which must also be dealt with in

defect tracking and test management. Often not all defects and tests are relevant for all prod-

uct variants. This knowledge must be acquired and used, in order to be able to avoid unneces-

sary development and testing effort. It is important in principle to be able to realize complete

variant-specific traceability. Thus expenditure and risk for new problems can be measured

more accurately. For example, problems in delivered product variants can be treated differ-

ently from errors or missed tests in undelivered variants.

There are two important approaches that must receive more attention.

1.2.1.1.2.1.1.2.1.1.2.1. The use for Deployment, QA, Analysis, VisualizationThe use for Deployment, QA, Analysis, VisualizationThe use for Deployment, QA, Analysis, VisualizationThe use for Deployment, QA, Analysis, Visualization

On the one hand the evaluation of variant-related data like test results and status information

is a big challenge. For example, test management tools typically offer efficient ways of struc-

turing test cases logically, of administering test logs efficiently and for allowing extensive

evaluations, however it does not represent information about product variants and restrictions

or constraints of the product line. Since modelling variants by their features and dependencies

is usually hard to implement or very unpractical in test management, a link with a tool specifi-

cally designed for variant management can combine the efficiencies of both platforms in the

best possible way. For this purpose test cases can be linked with individual elements from

variant management and thus be included in modelling, so that the relevant status information

is present for variant-specific analysis and visualization. In addition the information is avail-

able for further use in the workflow of product development, so that it can be used for deploy-

ment processes, extensive quality management and within other domains.

1.2.2.1.2.2.1.2.2.1.2.2. Improvement of Test Management / Defect TrackingImprovement of Test Management / Defect TrackingImprovement of Test Management / Defect TrackingImprovement of Test Management / Defect Tracking

On the other hand the information provided by variant management gives the potential to

obtain an increase in efficiency particularly of test management but also of defect tracking.

The following scenarios can be imagined:

- Automatic generation of variant-specific test suites, in order to accelerate and guaran-

tee the processes of preparation and testing. Thus all relevantrelevantrelevantrelevant tests can be considered

for the test run of a variant.

- Automatic generation of “stubs” for test plans, test cases, etc. for instance to guaran-

tee a desired minimum test coverage for all variants of the product line or to acceler-

ate the test management process.

- Automatic generation of variant-specific defect lists, which contain exactly the de-

fects, which concern the actual variant.

White Paper pure::variants Connector for ClearQuest

 5 / 19

2.2.2.2. IntroducingIntroducingIntroducingIntroducing the Solution the Solution the Solution the Solution
In the following a solution is presented, that uses IBM Rational ClearQuest for test manage-

ment and defect tracking and pure::variants from pure-systems for variant management.

2.1.2.1.2.1.2.1. IBM RIBM RIBM RIBM Raaaationaltionaltionaltional Tool Environment Tool Environment Tool Environment Tool Environment

ClearQuest is developed and distributed as part of the IBM Rational Software Delivery Plat-

form. It is used primarily for test management, defect tracking and change management.

2.1.1.2.1.1.2.1.1.2.1.1. IBM RatiIBM RatiIBM RatiIBM Ratioooonal Software Delivery nal Software Delivery nal Software Delivery nal Software Delivery PlatformPlatformPlatformPlatform

The IBM Rational Software Delivery Platform is a complete and general development platform,

which covers the entire life cycle of applications. With this platform all kinds of software

solutions can be developed and used for all industries. For example applications for web,

client/server, desktop, real time, embedded systems, etc.

The IBM Rational Software Delivery Platform is based on a platform, which makes unparal-

leled automation and teamwork possible during the entire development process: the universal

development framework Eclipse. Eclipse is an open source software development project with

over 100 software vendors as active participants. Eclipse facilitates role-based user inter-

faces, which offer an adapted view of the general enterprise and development resources to

each member of the team. With Eclipse as central platform, the IBM Rational Software Deliv-

ery Platform is supported by a multiplicity of partners and extended by a dynamic ecosystem

of tools and services.

2.1.2.2.1.2.2.1.2.2.1.2. IBM Rational ClearQuestIBM Rational ClearQuestIBM Rational ClearQuestIBM Rational ClearQuest

In order to guarantee the quality of a software product at all levels, IBM Rational offers a wide

range of Software Quality Management Tools that address all dimensions of software quality

including functionality, reliability, security, compliance and performance.

Process

& Portfolio

Management

Change- & Release Management

Quality Management

Architecture & Implementation

Governance & Life Cycle Management

Integrated Requirements Management

IBM Rational Software Delivery Platform

White Paper pure::variants Connector for ClearQuest

 6 / 19

IBM Rational ClearQuest is a tool for enterprise test life cycle management, with integrated

defect and change management.

The Test Management Model consists of the following areas:

- Test planningTest planningTest planningTest planning

- Test case creation

- Test case lifecycle management

- Test assets organization

- TTTTest authoring: est authoring: est authoring: est authoring: creating test scripts for test case execution

Metric Data-

Warehouse

Test planning,

Test control,

Test evaluation

Requirements

Management

Test definition and test execution

Overview of the IBM Rational Tools for the Tester

RequisitePro ClearQuest ProjectConsole

Manual Tester Functional Tester Performance Tester

Test planning

Test management Test authoring Test reporting

Test execution

IBM Rational ClearQuest Test Management Model

White Paper pure::variants Connector for ClearQuest

 7 / 19

- Test execution: Test execution: Test execution: Test execution: running configured test cases or test suites, and committing the results

to the database

- Test reporting: Test reporting: Test reporting: Test reporting: user-defined charts, queries, and reports

These stages are sequential. Typically, a Test Lead sets up the necessary items in the plan-

ning phase. A Tester writes test scripts in the Authoring phase and then runs tests to gather

test results in the Execution phase. Throughout all three phases, ClearQuest reporting can be

used to monitor progress.

Test Plans in Rational ClearQuest are a kind of folders where related test cases can be de-

fined. Through the allocation of further characteristics such as test iteration, configuration and

a test script (manual or automated) the test cases becomes executable units: configured test

cases.

Single configured test cases or test suites are executed using the selected testing tools and

the test results are logged in Rational ClearQuest. Defects and deviations can then be handed

over directly into defect tracking.

The following diagram shows the corresponding workflow:

2.2.2.2.2.2.2.2. Variant Management with pure::variantsVariant Management with pure::variantsVariant Management with pure::variantsVariant Management with pure::variants

pure::variants provides all characteristics necessary for a successful, tool-supported devel-

opment and realization of product lines. It is applicable throughout all phases of development,

starting from requirement analysis and software design, through implementation and on to

ClearQuest

Test

Management

Rational Test

Tools

RequisitePro

Test Log

Test Plan

create

ClearQuest

Defect

Tracking

Test Cases

define

Configured

Test Cases

configure

execute

Error Record

reference to requirements

describe /

record /

generate

record

defect

implemen-

tation

Test Scripts

reference to requirements

record

error

occurred?

ClearQuest Test Workflow

White Paper pure::variants Connector for ClearQuest

 8 / 19

production, testing, use and maintenance. All basic mechanisms are independent of any con-

crete programming language, development technology or platform.

pure::variants also has outstanding integration abilities. It can be integrated easily into existing

development processes and environments. With pure::variants a uniform solution results from

the integration of disparate customer tools for configuration management, requirement engi-

neering, modelling and testing. Binding to arbitrary tools is possible at any time using an XML-

based exchange format and a multiplicity of open interfaces. Efficient import mechanisms

make integration into existing software projects possible and reduce the initial expenditure

substantially. For highly-specific requirements, pure::variants is flexibly expandable with the

integration of additional modules. All modules have complete access to all variant knowledge.

2.2.1.2.2.1.2.2.1.2.2.1. Technology FundamentalsTechnology FundamentalsTechnology FundamentalsTechnology Fundamentals

With pure::variants the process of variant management is divided into four parts/steps. Each

part is addressed at different stages in the development life cycle.

2.2.1.1.2.2.1.1.2.2.1.1.2.2.1.1. Feature ModellingFeature ModellingFeature ModellingFeature Modelling

Based on a textual analysis of the requirements, feature models are created, the features of

the product line and the dependencies between each other are the focus of modelling. Feature

models can be structured hierarchically, displayed graphically and are easily understandable.

With connections to other tools used in the product line development life cycle, the raw data

for feature models can often be extracted from an existing requirements database and then

augmented with variant-related information. Furthermore it is common that there exists some

additional information associated with each feature of a product line; for example, test cases

and their current execution status, change requests, defects, workflow information, and so on.

This information is usually collected in other tools and databases and so is available for further

processing, and can be linked with features in pure::variants.

2.2.1.2.2.2.1.2.2.2.1.2.2.2.1.2. Family ModellingFamily ModellingFamily ModellingFamily Modelling

Based on the feature model and further requirements for the concrete derivation of the soft-

ware systems and products, the design of the solution(s) is accomplished. Solution elements

with their relations, restrictions and links to their requirements are gathered together in the

family model and are thereby available for automatic processing.

Variant Management Process

Require-

ments Analy-

sis: Acquisi-

tion of ab-

stract vari-

ability

knowledge of

the product

line.

Design of the

solution:

Acquisition

of knowledge

about the

realization of

the product

line.

Realization of

the solution:

Formation of

the variants

by selecting

the desired

elements.

Generation of

variants:

Automated

processing of

the acquired

knowledge.

Fe
a
tu

re
 M

o
d
e
lli

n
g

Fa
m

ily
 M

o
d
e
lli

n
g

V
a
ri

a
n
t
C

o
n
fi
g
u
ra

ti
o
n

T
ra

n
sf

o
rm

a
ti
o
n

White Paper pure::variants Connector for ClearQuest

 9 / 19

It is also possible to generate the raw data for the family models out of the implementation of

the product line and to augment this raw data with relevant variability information. In this case

a connection to an existing configuration management tool is often an effective solution. In

addition to modelling the solution, solution components are linked with features in the feature

models. Thus a continuous consideration of variability from the requirement to the solution is

possible. As for the features of the product line a multiplicity of additional information can also

arise during its implementation, which correspondingly can be set in relation to the elements

of the family models.

2.2.1.3.2.2.1.3.2.2.1.3.2.2.1.3. Variant ConfigurationVariant ConfigurationVariant ConfigurationVariant Configuration

After all relevant knowledge about the product line and its solution have been acquired, indi-

vidual products/variants can be derived. Through the connection of solution elements with the

corresponding requirements, a selection of the desired features is sufficient to describe a

specific solution and therefore to derive a variant. In addition the (now available) modelling of

dependencies and restrictions makes it possible to check the desired configuration for valid-

ity, and so pure::variants is able to support the user while configuring a variant correctly.

Any additional information linked to model elements can be processed, so that metrics can be

provided easily, in order to gain variant-specific information about the state of implementation,

test coverage, defect ratio and so on.

2.2.1.4.2.2.1.4.2.2.1.4.2.2.1.4. TransformationTransformationTransformationTransformation

The configuration of a variant provides a description of its solution, which may be used to

automatically generate the final product variant. For this purpose pure::variants provides a

standard transformation. This transformation can be customized extensively and can be ex-

tended with additional (customer) modules, in order to control the transformation process.

Since modelling information from all different stages of the development life cycle was linked

together, all this information is now available during the transformation process. Depending on

which transformation modules have been integrated into pure::variants, different actions are

now performed during the transformation. For example, a build process for variant generation

can be started, for which a variant-specific composition of sources and a makefile were pre-

viously generated.

Test management information can be used to generate variant-specific test suites. A link with

defect tracking makes the generation of variant-specific error lists a further possibility.

2.3.2.3.2.3.2.3. pure::variants Connector for ClearQuestpure::variants Connector for ClearQuestpure::variants Connector for ClearQuestpure::variants Connector for ClearQuest

pure::variants Connector for ClearQuest offers a connection between variant management and

test management/defect tracking. In section 1.2 the future potential of linking pure::variants

and ClearQuest was discussed. Currently the focus is on visualizing the status of an element.

Defects and test cases recorded in ClearQuest can be linked to specific elements in

pure::variants. This makes it possible to retrieve the last state of each ClearQuest item. In case

of an error like a not yet fixed defect or a failed test, pure::variants reports an appropriate

warning. Connections are made by means of the ID of the respective entry of the ClearQuest

database and stored in a special attribute of the corresponding element in pure::variants. Link

restrictions for attribute values can be added as usual to make them relevant only in some

specific variants. Thus errors can be modelled that only occur in a concrete configuration of

White Paper pure::variants Connector for ClearQuest

 10 / 19

certaincertaincertaincertain components of the product line or tests that may only be executed and whose result is

only relevant when allallallall tested features are contained in the product.

pure::variants Connector for ClearQuest keeps the connection to the ClearQuest database

open and updates its status information at regular intervals. Therefore changes are directly

visible in pure::variants and the information may be used to support the deployment process.

How pure::variants Connector for ClearQuest works is illustrated in the following examples –

one a test management scenario, and one a defect-tracking scenario. Finally we give a brief

outline of planned future development of the Connector.

White Paper pure::variants Connector for ClearQuest

 11 / 19

3.3.3.3. Test management example:Test management example:Test management example:Test management example:

3.1.3.1.3.1.3.1. Preparation of ClearQuestPreparation of ClearQuestPreparation of ClearQuestPreparation of ClearQuest

1. Set up a ClearQuest user database CQPV in the

ClearQuest Designer

2. Create a connection to the new database with the

ClearQuest Eclipse Client

3. Add a new asset registry WeatherStation to the

ClearQuest TestManager

4. Create a test plan WeatherStationTestPlan

5. Create a new configuration attribute

ps:VariantName with one value for each desired

variant

6. Create one configuration for each variant

3.2.3.2.3.2.3.2. Preparation ofPreparation ofPreparation ofPreparation of p p p puuuure::variantsre::variantsre::variantsre::variants

1. Create the example project for the weather

station (File->New->Example…->Weather

Station)

2. Open the feature model Weather Station.xfm

of the weather station project

3.3.3.3.3.3.3.3. Create and configure tests in ClearQuestCreate and configure tests in ClearQuestCreate and configure tests in ClearQuestCreate and configure tests in ClearQuest

One possible representation of variants in ClearQuest is to use

configurations, whereby in section 3.1 for each relevant product

variant exactly one configuration was created. Test cases that

are managed in test plans are independent of any concrete vari-

ant. This means that the unconfigured test cases cover the func-

tionality of the entire product line.

The information about which variants a test case is associated

with is represented by its configuration. Since there is exactly

one configuration for each variant a configured test is created for

each test that contains the tested functionality.

In the last step test suites for each variant can be created and

configured. This makes it possible to test each variant exactly

according to its specific functionality and implementation. In a

White Paper pure::variants Connector for ClearQuest

 12 / 19

production scenario many steps can be initiated automatically using pure::variants.

1. Create test cases for the desired features from the weather station in the ClearQuest

Eclipse Client. (e.g.: LCD, DataTransfer, Pressure, Temperature, Wind)

2. Create the desired configured test cases for each test case. For each variant where

the tested feature is contained, a configured test is created.

3. Create and configure a test suite for each variant. All tests for a configuration will be

assigned to the test suite.

3.4.3.4.3.4.3.4. Link tests with pure::variantsLink tests with pure::variantsLink tests with pure::variantsLink tests with pure::variants

In order to get status information for specific variants from ClearQuest, the created test cases

need to be linked with elements in pure::variants. Configured test cases are assigned to the

corresponding variants automatically, by means of a new configuration attribute

pv:VariantName.

1. Check the connector’s settings in the pure::variants preferences.

a. In “Variant Management -> External Tools -> ClearQuest Tests”, the Local
ClearQuest Test Settings have to be set to the connection created in section

3.1.

b. In “Variant Management -> External Tools”, ClearQuest Tests should be acti-

vated. To begin with it could be useful to set the Update time to a small value

e.g. 10 seconds.

c. In “Variant Management -> Visualisation”, Show restrictions and Show attrib-
utes should be activated.

d. In the pure::variants toolbar, Automatically Validate
Model should be turned on.

2. Select an element in the feature model and create a new link to a test by means of the

context menu (New -> ClearQuest Test).

a. The connector uses a connection which was previously configured in the

ClearQuest Client for communication with the ClearQuest database. When first

connecting the Connector asks for the necessary authentication data. (In an

empty ClearQuest database a user admin with no password is usually created.)

b. A dialog opens for test selection. All available test cases are listed. After selec-

tion of the desired test and completion of the dialog, an attribute cq:Tests has

been added to the element with the test ID as value.

White Paper pure::variants Connector for ClearQuest

 13 / 19

c. This process must be repeated for each test case which is to be linked with

variant management in order to be available for further processing there. For

each test that is linked to the currently selected element the Relations View

shows a relation with status information fetched from ClearQuest.

3. In some cases conditional tests exist. These

could test the interaction between different

functionalities. Restrictions can be added to

limit the validity of the respective test using the

context menu of the respective attribute value

for a test case.

3.5.3.5.3.5.3.5. Create test logs in ClearQuestCreate test logs in ClearQuestCreate test logs in ClearQuestCreate test logs in ClearQuest

Create some test logs in ClearQuest to record the execution results of the tests in

pure::variants.

1. Navigate to a configured test case in the Test Manager of the ClearQuest Eclipse Cli-

ent.

2. Create a new test log by means of the context menu of the configured test case New
(Test Log). Complete the following dialog adding some short execution details and

close the dialog.

To have more data for use in pure::variants it is useful to define test logs for several tests and

set some to passed and others to failed.

3.6.3.6.3.6.3.6. Show test results in pure::variantsShow test results in pure::variantsShow test results in pure::variantsShow test results in pure::variants

Now all information is available for evaluation and visualization in pure::variants. Test results

are shown in pure::variants as follows:

1. The test failed:

In this case a marker will be created at the left hand side of the model in

pure::variants. It marks the element that links to the failed test. Thus where errors

could occur in a variant is directly shown in the models.

In variant models the problem marker is shown only if the corresponding element is

contained in the variant and the corresponding test was not removed from the solution

by restrictions. In addition pure::variants tries to figure out which configured test case

belongs to the corresponding variant by means of the configuration attribute

pv:VariantName or the name of the configuration, so that only the relevant test logs are

considered.

Tests in the editor and their visualization in the Relations View

White Paper pure::variants Connector for ClearQuest

 14 / 19

Note: The variant model must be checked to make the markers show. Either perform a

single check by pressing the check button or activate automatic checking.

2. The test passed:

In this case no markers are shown in the models. Only in the Relations View does the

symbol show that the test passed.

3. The test has not run yet or is in an unknown state:

In this case a marker with a question mark is generated . This makes it very easy to

see that there is still need for action here and there was insufficient testing.

In addition to display of markers in the models, status information is shown in the Matrix View

of a Configuration Space. Double-clicking on the Config Space opens an editor showing one

column for each variant. Each row corresponds to an element and the selection status for

each element is immediately apparent.

By selecting “Visualize… -> ClearQuest Test State” in the context menu of the Matrix View

another view on the selections for the test states of the elements can be shown. With this it is

evident in which variants failing tests occur or which variants must be still tested. The symbols

here are the same as in the models.

Variant overview – View of the marker symbols in the Matrix View

White Paper pure::variants Connector for ClearQuest

 15 / 19

4.4.4.4. Defect Tracking Defect Tracking Defect Tracking Defect Tracking exampleexampleexampleexample::::

4.1.4.1.4.1.4.1. PreparationsPreparationsPreparationsPreparations

1. The preparations for setting up the ClearQuest database correspond to those in sec-

tion 3.1. Furthermore it is useful to create a query to list all defects. The easiest way to

do this is by means of the context menu of Public Queries in the ClearQuest Navigator,
by creating a query on the defects without filters.

2. For variant management with defects, unlike the test cases example, it is usually un-

necessary to devote special attention to their structuring. For this reason it is sufficient

to create some defects in ClearQuest as a basis for this example. (E.g.: LCD, USB port,

Pressure, Temperature)

3. As described in section 3.2 the weather station example should be created in

pure::variants.

4. The pure::variants preferences for defect tracking must be set in “Variant Manage-

ment -> External Tools -> ClearQuest Defects” and in “Variant Management -> External

Tools” as mentioned in section 3.4, part 1.

4.2.4.2.4.2.4.2. Link defects with pure::variantsLink defects with pure::variantsLink defects with pure::variantsLink defects with pure::variants

As done above for test management, defects in ClearQuest have to be linked with elements in

pure::variants.

1. Select an element in the feature model and create a new link to a defect by means of

its context menu (New -> ClearQuest Defect).

a. The Connector uses a connection that was previously configured in the Clear-

Quest Client to communicate with the ClearQuest database. When the first

connection is attempted the Connector asks for the necessary authentication

data. (In an empty ClearQuest database a user admin with no password is

commonly created.)

b. A dialog for defect selection opens. All available defects are listed. After se-

lecting the desired defect and completing the dialog, an attribute cq:Defects is

added to the element with the defect ID as its value.

c. This process is followed for each defect that is to be linked with variant man-

agement in order to be available for further processing there. For each defect

Query to show all defects in ClearQuest

White Paper pure::variants Connector for ClearQuest

 16 / 19

linked to the currently selected element the Relations View shows a relation

with status information fetched from the ClearQuest database.

2. By using the context menu of the respective at-

tribute value for a defect it is possible to add

restrictions to be able to evaluate the current

processing state of a variant to add certain

conditions to a defect (E.g.: An error, which

arises only in interaction with other functional-

ity and is therefore not relevant in each vari-

ant.)

4.3.4.3.4.3.4.3. Show defect status information in pure::variantsShow defect status information in pure::variantsShow defect status information in pure::variantsShow defect status information in pure::variants

After these steps all information is now available for evaluation and visualization in

pure::variants. The state of a defect is shown in the user interface of pure::variants as follows:

1. The defect is open/not yet assigned:

In this case a marker will be created at the left hand side of the model in pure::variants.

It marks the element that links to the open defect. So, where errors occurred/may pos-

sibly occur in a variant is directly visible. If the defect was classified as Enhancement
or Minor, its symbol is yellow , at a higher severity the marker is red .

The problem marker is shown in the variant models only if the corresponding element

is contained in the variant and the associated defect was not removed from the solu-

tion by restrictions.

Note: The variant model must be checked to make the markers show. Either perform a

single check by pressing the check-button or by activating automatic checking .

2. The defect is closed:

In this case no markers are shown in the models. Only in the Relations View does an

appropriate symbol show that the defect is closed.

3. The defect is in an unknown state:

Here a marker with a question mark is generated . This happens rarely and particu-

larly when no connection to the ClearQuest database could be established.

White Paper pure::variants Connector for ClearQuest

 17 / 19

Beside the display of markers in the models, status information is also shown in the Matrix

View of a Configuration Space. By double-clicking on the Config Space an editor opens and

shows one column for each variant. Each row corresponds to an element and the selection

state for this element can be seen directly.

By selecting “Visualize… -> ClearQuest Defects State” in the context menu of the Matrix

View, another view on the selections for the defect states of the elements can be shown. Thus

it is evident which variants still have open defects. The symbols here are the same as in the

models.

4.4.4.4.4.4.4.4. Change the defChange the defChange the defChange the defect state in ClearQuestect state in ClearQuestect state in ClearQuestect state in ClearQuest

Connector for ClearQuest synchronizes regularly with the ClearQuest database. Thus the

current status information about defects is always shown and can be evaluated effectively

and in a variant-specific way.

1. Execute a query in the ClearQuest Navigator to list the defects.

2. Change the state to another value by selecting “Change State” from the context menu

of a defect. (E.g.: Set the defect to closed/resolved by selecting Close or Resolve and

complete the Resolution e.g. fixed. Or reopen the defect with Reopen/Reject and reset

the Resolution value vice versa)

For this example it may help to experiment a little with the conditions in order to see how the

corresponding changes take effect in pure::variants.

Variant overview – View of the marker symbols in the Matrix View

White Paper pure::variants Connector for ClearQuest

 18 / 19

5.5.5.5. Future development of the ConneFuture development of the ConneFuture development of the ConneFuture development of the Connectorctorctorctor
With Connector for ClearQuest it is currently possible to visualize the current states of defects

and tests in a variant-specific way and to use this information for further purposes. By means

of the extensive information pure::variants contains, it is planned in future versions to create

the corresponding entries automatically in ClearQuest. Thus “stubs” of test cases could be

generated in ClearQuest from feature and family models, in order to guarantee a minimum of

test coverage.

A far more interesting and complete option would be the automatic generation of a majority of

the elements in the ClearQuest testing hierarchy. All necessary information can be stored in

pure::variants models to export all data, from configuration attributes, to configurations them-

selves, up to the configured test cases and the test suites into ClearQuest. Information about

the execution of concrete test cases and test logs would still be managed in ClearQuest,

however most of the structural information would be extracted from the variant management.

In addition the test history as well as all information relevant for test execution is administered

and made accessible in ClearQuest.

White Paper pure::variants Connector for ClearQuest

 19 / 19

6.6.6.6. ReferencesReferencesReferencesReferences
For an introduction to ClearQuest or pure::variants, the respective documentation and the

beginners tutorials are recommended.

You will find more information and resources (documentation, tutorials, white papers and

evaluation software) on the pure-systems and IBM Rational websites.

http://www.pure-systems.com

http://www.ibm.com/developerworks/rational/

http://www.ibm.com/software/rational/

