
1

pure::variants Extensibility Guide
pure-systems GmbH

Version 6.0.5.685 for pure::variants 6.0

Copyright © 2003-2024 pure-systems GmbH

2024

Table of Contents
1. Introduction .. 1

1.1. Extensibility Options ... 1
1.2. Installation of the SDK Examples .. 2

2. pure::variants Extension ... 3
2.1. pure::variants plugin templates .. 3
2.2. Use Custom Element Icons ... 4
2.3. Deploy JavaScript File with pure::variants ... 5

3. Reference ... 5
3.1. Model Properties .. 5
3.2. pure::variants Client Transformation Modules .. 6

4. Tutorials .. 11
4.1. Overview ... 11
4.2. Developing a pure::variants Model Validation Check ... 11
4.3. Creating a pure::variants Model from a CSV File .. 21

5. Examples ... 31
5.1. Overview ... 31
5.2. Metrices Plug-in Example .. 31
5.3. Feature Element Details Editor Tab Plug-in Example ... 32
5.4. SimpleFeature Editor Plug-in Example .. 32
5.5. Modeling EventHandler Plug-in Example .. 33

1. Introduction

This documentation describes the extensibility options of pure::variants, a software variant management system.
It is part of the pure::variants Extensibility SDK, which provides sample extensions for pure::variants and also
API documentation for interfacing with pure::variants from various programming languages.

The manual is available in online help inside the installed product as well as in printable PDF format. Get the
PDF here.

1.1. Extensibility Options

The architecture of pure::variants as a client/server application (see picture below) with an Eclipse-based user
interface provides a number of place and techniques for building extensions.

pure::variants Extensibility Guide

2

Figure 1. Client Server Architecture

The user interface can be extended using the standard mechanisms provided by the Eclipse platform, called exten-
sion points. Beside the already in a standard Eclipse existing extension points (for adding menu items, providing
toolbar buttons, etc.) pure::variants provides also new extension points which provide an easy way to add new
functionality to pure::variants e.g. for model import/export, element type specific wizards and editors, new editor
views.

A second layer for extensibility is the core Java API which provides most non-user interface related functionality.
This API can be used to interface with pure::variants from other Java-based applications, which are not built on
top of the Eclipse platform.

It is also possible (but not advisable) to directly connect to the server using the SOAP protocol interface. In most
cases one should rely on the Java API for handling the communication.

The core functionality itself is realized in a separate application which provides a similar platform independent
extension interface as it is available in Eclipse but supports also platform specific extensibility mechanisms such
as shared libraries and COM/OLE interfaces.

All afore mentioned extensibility options are (depending on the concrete configuration) available for all
pure::variants Editions. The Integration Edition also provides the option to integrate the pure::variants core com-
ponents in own binary applications.

1.2. Installation of the SDK Examples

As in the introduction mentioned the SDK feature is provided with an API documentation and corresponding
sample extensions. For each part of this documentation a reference to a sample extension is given if there is one.
Installing such a sample is very easy:

Choose in the eclipse workbench File -> New -> Example... -> Variant Management SDK. Below this category
two example wizards can be chosen:

The "Extensibility Example Plugins" - wizard and the "Extensibility Example Projects" - wizard. To install a
project (plugin) select the desired wizard and press next. A list of all example projects (plugins) is shown. Check
the projects you wish to install and press finish.

pure::variants Extensibility Guide

3

To run the examples start an eclipse runtime workbench. See chapter PDE Guide->Getting Started->Basic Plug-
in Tutorial->Running a plug-in in the Eclipse help.

2. pure::variants Extension

2.1. pure::variants plugin templates

The pure::variants SDK provides some plugin templates. With these template you can compose your own
pure::variants importer, synchronizer and transformation. All templates are available as plugin in templates in the
Eclipse New Plug-In Project wizard.

To use the template create a new Eclipse plugin project. Right-click in the Eclipse Projects View and choose New
-> Project -> Plug-in Project from the context menu (see Figure 2, “New Plug-in Project Wizard”).

Figure 2. New Plug-in Project Wizard

Figure 3, “Plug-in Project Settings” shows the settings required for the plugin. Please note that the plugin has to
work with an eclipse version and must not work with OSGI framework.

Figure 3. Plug-in Project Settings

After pressing Next the Plug-in Content page is opened. Please apply the settings as shown in Figure 4, “Plug-
in Content Settings”.

pure::variants Extensibility Guide

4

Figure 4. Plug-in Content Settings

The next Page shows available Plug-In templates. Choose pure::variants Plug-in(Figure 5, “Plug-in Template
Selection”). On the next page you can choose which parts of the template you need. It is possible to use all
the template parts alone. Or to use all parts together. The later enables you to implement a complete round trip
with importing data, synchronize the external data and transform the data. It also contains model manipulation
if necessary.

Figure 5. Plug-in Template Selection

To run the examples start an eclipse runtime workbench. See chapter PDE Guide->Getting Started->Basic Plug-
in Tutorial->Running a plug-in in the Eclipse help.

2.2. Use Custom Element Icons

To use custom element icons for elements in pure::variants custom icons can be placed in one of the following
locations:

pure::variants Extensibility Guide

5

• <Eclipse Installation Directory>/configuration/com.ps.consul.eclipse.ui/images

• <Eclipse Configuration Directory>/com.ps.consul.eclipse.ui/images

• In a plugin which defines an image directory with the com.ps.consul.eclipse.ui.ImageDirectory extension point.
The icons have to placed in the define image directory.

Both pathes can be found in the Installation Details in the Eclipse About Dialog. In tab "Configuration".
eclipse.home.location is showing the Eclipse installation path and osgi.configuration.area is showing the config-
uration directory.

The icon has to be of type gif and the name of the icon file has to follow a specific scheme: element_type-
element_class-MODELTYPEICON.gif

All elements in pure::variants have an element type and an element klass. Both usually have a namespace and
a name. For example ps:feature is the generic feature type. The namespace is ps and the name is feature. The
icon file name is composed of <type namespace>_<type name>-<class namespace>_<class name>-<MODEL
TYPE>ICON.gif. MODELTYPE is either XFM or CCFM.

For a generic feature the file name is ps_feature-ps_feaure-XFMICON.gif.

2.3. Deploy JavaScript File with pure::variants

To use custom JavaScript files in pure::variants those files can be deployed with pure::variants. The files can be
placed in on of the following locations:

• <Eclipse Installation Directory>/configuration/com.ps.consul.eclipse.ui/javascripts

• <Eclipse Configuration Directory>/com.ps.consul.eclipse.ui/javascripts

• In a plugin which defines a JavaScript scripts ScriptDir with the
com.ps.consul.eclipse.javascript.library.ScriptDir extension point.

Both paths can be found in the Installation Details in the Eclipse About Dialog. In tab "Configuration".
eclipse.home.location is showing the Eclipse installation path and osgi.configuration.area is showing the config-
uration directory.

3. Reference

3.1. Model Properties

ps:evaluation:properties

Settings for property handling during evaluation. This can be used to skip or pass through properties in prolog.
The value is a XML structure:

<properties>
 <skip class="element class" type="element type" name="property name"/>
 <pass class="element class" type="element type" name="property name"/>
</properties>

ps:evaluation:relation:mapping

Mapping of user relation types to p::v base relation types. The value is a XML structure. It can contain multiple
<map> tags.

<relationtypemap>
 <map from="user relation type" to="p::v base relation type"/>
</relationtypemap>

pure::variants Extensibility Guide

6

ps:diff:rebuilders

Property with IDs of IDiffRebuildTask to perform model dependen difference rebuilds. Rebuilders needs to reg-
ister at the

com.ps.consul.eclipse.ui.viewer.tree.diff.RebuildTask

extension point.

ps:admin:properties:disabled

Set to "true" to disable creation and update of admin properties on model elements.

3.2. pure::variants Client Transformation Modules

Autosar Feature Model Exchange Format (ARXML) Transformation

Export variants to AUTOSAR Feature Model files.

Transformer Label Autosar Feature Model Exchange Format (ARXML)
Transformation

Transformer Name AUTOSAR FMEF Transformation

ID com.ps.consul.eclipse.ui.autosar.fmef.transform.module

AUTOSAR Transformation Module

Creates variants of AUTOSAR projects.

Transformer Name AUTOSAR Transformation Module

ID com.ps.consul.eclipse.ui.transform.autosar.clienttransformation.module

CaliberRM Module

Triggers the export of a variant description model to CaliberRM.

Transformer Name CaliberRM Module

ID com.ps.consul.ui.caliber.transform.module

External Capella Transformation

Starts Capella and triggers transformation.

Transformer Name External Capella Transformation

ID com.ps.consul.eclipse.ui.transform.capella.module

Simulink Configuration Propagator

Propagate a variation point configuration to running Simulink instance.

Transformer Label Simulink Configuration Propagator

Transformer Name Simulink Configuration Propagation

pure::variants Extensibility Guide

7

ID com.ps.consul.eclipse.simulink.configurator.server.propagation

Simulink Configuration m-File Writer

Write a variation point configuration to a MATLAB/Simulink initialisation file (*.m).

Transformer Label Simulink Configuration m-File Writer

Transformer Name Simulink Configuration Saving

ID com.ps.consul.eclipse.simulink.configurator.server.saving

Creo Variation Module

Triggers the transformation of the example Java code.

Transformer Name Creo Variation Module

ID com.ps.consul.eclipse.ui.creo.transform.module

IBM Rational DOORS Module

Triggers the export of a variant description model to DOORS.

Transformer Name IBM Rational DOORS Module

ID com.ps.consul.ui.doors.transform.module

IBM Rational DOORS Configuration Exporter

Triggers the export of a variant description model to DOORS.

Transformer Name IBM Rational DOORS Configuration Exporter

ID com.ps.consul.ui.doors.transform.variant.column.module

IBM Rational DOORS NG Module

Triggers the transformation of the Doors NG Module.

Transformer Name IBM Rational DOORS NG Module

ID com.ps.consul.ui.doorsng.transform.module

EMF Feature Mapping Module

Create Variants of Mapped Ecore Models during the pure::variants transformation.

Transformer Name EMF Feature Mapping Module

ID com.ps.consul.eclipse.ui.mapping.ecore.clienttransformation.module

HTML Transformation Module

Creates HTML output of Models. Models can be input or transformed models of a VDM.

Transformer Name HTML Transformation Module

ID com.ps.consul.eclipse.ui.pvexport.transform.module

pure::variants Extensibility Guide

8

Reuse Transformation

Reuse another transformation configuration as part of the current transformation.

Transformer Name Reuse Transformation

ID com.ps.consul.eclipse.ui.transform.sub.module

Ant Build Module

Runs an Ant build file as part of the transformation.

Transformer Name Ant Build Module

ID com.ps.consul.eclipse.ui.transform.sub.ant

External Program Runner

Run an external program.

Transformer Label External Program Runner

Transformer Name exec

ID com.ps.consul.eclipse.ui.transform.exec.module

Makefile Generator

Generate a Makefile compatible to gmake, nmake, or ccmake.

Transformer Label Makefile Generator

Transformer Name makefile

ID com.ps.consul.eclipse.ui.transform.makefile.module

Action List Generator

pure::variants standard transformation which generates

Transformer Label Action List Generator

Transformer Name standard transformation

ID com.ps.consul.eclipse.ui.transform.actionlist.generator.module

Action List Runner

Execute pure::variants standard transformation action

Transformer Label Action List Runner

Transformer Name actionlist

ID com.ps.consul.eclipse.ui.transform.actionlist.runner.module

Java Script Transformation Module

Triggers the transformation of Javascript code.

Transformer Name Java Script Transformation Module

pure::variants Extensibility Guide

9

ID com.ps.consul.eclipse.ui.transform.javascript.modul

Element Cluster Report

Generates a selection cluster report of the transformed variants in a CSV file.

Transformer Name Element Cluster Report

ID com.ps.consul.eclipse.ui.variant.actions.cluster.report.module

HP Quality Center Test Set creation module

Triggers the transformation of HP QC Test Plans which creates Test Instances for

Transformer Name HP Quality Center Test Set creation module

ID com.ps.consul.eclipse.ui.hpqc.transform.module.testset

HP Quality Center Test Folder creation module

Triggers the transformation of HP QC Test Plans which creates Test Folders and

Transformer Name HP Quality Center Test Folder creation module

ID com.ps.consul.eclipse.ui.hpqc.transform.module.testfolder

PTC Integrity Module

Triggers the transformation of a PTC Integrity document.

Transformer Name PTC Integrity Module

ID com.ps.consul.eclipse.ui.ptc.integrity.module

JAMA Connect Transformation Module

Triggers the transformation of the JAMA project.

Transformer Name JAMA Connect Transformation Module

ID com.ps.consul.eclipse.ui.jama.transform.module

MagicDraw Transformation Module

Triggers the transformation of Magic Draw Projects.

Transformer Label MagicDraw Transformation Module

Transformer Name Magic Draw Transformation Module

ID com.ps.consul.eclipse.ui.transform.magicdraw.module

Microsoft Word Module

Triggers the transformation of Microsoft Word Documents.

Transformer Name Microsoft Word Module

ID com.ps.consul.ui.transform.office.module

pure::variants Extensibility Guide

10

Microsoft Excel Module

Triggers the transformation of Microsoft Excel Workbooks.

Transformer Name Microsoft Excel Module

ID com.ps.consul.ui.transform.office.excel.module

Polarion Configuration Exporter

Triggers the transformation of the Polarion Module.

Transformer Name Polarion Configuration Exporter

ID com.ps.consul.eclipse.ui.polarion.transform.module

Polarion Variants Module

Triggers the transformation of Polarion LiveDocs inside Polarion.

Transformer Name Polarion Variants Module

ID com.ps.consul.eclipse.ui.polarion.variants.clientModule

IBM Rational Rhapsody Module

Triggers the transformation of IBM Rational Rhapsody file and server projects.

Transformer Label IBM Rational Rhapsody Module

Transformer Name Rhapsody Module

ID com.ps.consul.ui.transform.rhapsody.module

IBM Rational Quality Manager Module

Triggers the transformation of the RQM Test Plans.

Transformer Name IBM Rational Quality Manager Module

ID com.ps.consul.eclipse.ui.rqm.transform.module

Software Configuration Management Wrapper

Runs the Software Configuration Management wrapper for ps:scmfile source elements.

Transformer Label Software Configuration Management Wrapper

Transformer Name scmwrapper

ID com.ps.consul.server.scmsync.module

Enterprise Architect Module

Triggers the transformation of a Sparx System Enterprise Architect Project.

Transformer Name Enterprise Architect Module

ID com.ps.consul.ui.transform.sparxsea.module

pure::variants Extensibility Guide

11

Microsoft TFS Module

Transformer Name Microsoft TFS Module

ID com.ps.consul.eclipse.ui.tfs.transform.module

VEL Configuration Writer

Write a VEL configuration to XML file.

Transformer Label VEL Configuration Writer

Transformer Name VEL Transformation Module

ID com.ps.consul.eclipse.ui.vel.transformation.module

Zuken Variation Module

Creates Zuken variation resource files with destinations.

Transformer Name Zuken Variation Module

ID com.ps.consul.eclipse.ui.zuken.transform.module

4. Tutorials

4.1. Overview

Most tutorials consist of two eclipse projects. One can be used to build an eclipse plugin which has to be installed
in the Eclipse plugins folder (these projects have the suffix .plugin) and example pure::variants projects (these
projects have the suffix .pvproject). These projects can only be used when the respective Eclipse plugin is installed.

To ease the installation process, installed SDK provides two example packages installable from "New"->"Ex-
amples"->"Variant Management SDK". The Extensibility Example Plugins package contains all eclipse plugin
projects and installs them into the workspace when selected. The Extensibility Example Projects package contains
all example projects.

4.2. Developing a pure::variants Model Validation Check

Overview

The reader must have basic knowledge of pure::variants and the Java Plugin Development under Eclipse. For
more information about the Eclipse Plugin concept see chapter Plattform Plug-in Developer Guide in the Eclipse
Help.

This tutorial explains how to develop a new check and corresponding quick fix for the pure::variants Model Val-
idation Framework. Model Validation checks are applied in order to examine the correctness of a pure::variants
model. If a check detects problems in a model, the provided quick fix can be used to solve this problem automat-
ically.

A check is a Java class that is registered as Model Validation Framework extension in the Eclipse plugin containing
the check. The quick fix also is a Java class that does not need to be registered. In the following it is shown how to
setup a new Eclipse plugin, implement and register the check, and provide a quick fix for the check. The presented
example check examines all unique names of the elements of a feature model. The names must begin with the
string feature, otherwise a problem is announced.

The tutorial is structured as follows. Chapter 2 describes how a new Eclipse plugin is created. Chapter 3 shows the
implementation and registration of the check class. Chapter 4 shows how the new check is activated and applied to
a model. Chapter 5 explains how the quick fix for the check is implemented and connected to the check. Chapter

pure::variants Extensibility Guide

12

6 shows how the quick fix for the check is used. The last chapter provides information about how to install the
new plugin in an Eclipse installation.

Before reading this tutorial it is recommended to read section Model Check Framework (Tasks/Validation Mod-
els/Model Check Framework) from the pure:: variants User's Guide.

The plugin described in this tutorial is part of the pure::variants SDK. It can be installed by choosing New ->
Example from the Eclipse File menu, and then Examples -> Variant Management SDK -> Extensibility Example
Plugins -> com.ps.pvesdk.examples.modelvalidation.plugin.

Setting up the Plugin Project

As first a new Eclipse plugin project has to be created. Right-click in the Eclipse Projects View and choose New
-> Project -> Plug-in Project from the context menu (see Figure 6, “New Plug-in Project Wizard”).

Figure 6. New Plug-in Project Wizard

The name of the new project shall be com.ps.pvesdk.examples.modelvalidation. Figure 7, “Plug-in Project Set-
tings” shows further settings required for the plugin. Please note that the plugin has to work with an eclipse version
and must not work with OSGI framework.

Figure 7. Plug-in Project Settings

pure::variants Extensibility Guide

13

After pressing Next the Plug-in Content page is opened. Please apply the settings as shown in Figure 8, “Plug-
in Content Settings”.

Figure 8. Plug-in Content Settings

After pressing the Finish button a new plugin project is created. The new project contains an empty src-directory
for the Java code and a plugin.xml file.

Next the dependencies should be added for the plug-in. For this double-click on the plugin.xml file to open it in
the Plug-in Manifest Editor. Switch to the Dependencies page and press the Add button to add the plugin-ins
listed in Figure 9, “Dependencies”.

Figure 9. Dependencies

This is all to setup the project. The next step is to write the check class.

Writing the Check Implementation

This chapter shows how to implement the Java class for the new Model Validation check.

First the new Java package com.ps.pvesdk.examples.modelvalidation.plugin has to be created in
the src-directory of the plug-in. Then create a new Java class within the package and name it
CheckElementUniqueNameExample.java. This class has to be derived from class Check and has to implement
the IElementCheck interface.

Each check class implements the check() methods from the interfaces it implements (IElementCheck in this case).
These methods are called by the Model Validation Framework for each model item to check (model elements

pure::variants Extensibility Guide

14

in this case), and implement the check functionality. The return value of a check() method is an object of type
ICheckResult. This object contains the problems found by this check (of type CheckProblem).

In the presented example a problem is provided for all features with a unique name that does not start with the
string feature. The problem object contains:

1) The problem-class. The problem-class has to match the name of the check as given at the extension point of
the plugin.

2) The problem-type, here ELEMENTCHECK_TYPE. The type corresponds to the interfaces implemented by the
check.

3) The problem-code to identify the problem. This code has no special format but shall be unique.

4) The problem-severity, here ERROR_SEVERITY. A problem can also have the severtities warning and info.

Furthermore the problem object contains information about the model item that was checked, i.e. the element id
in this case, and a textual problem description.

This is the implementation of the check() method of the example check.

/**
 * This method implements the check. It is called by the model validation
 * framework for every element of the checked model. It gets the element to
 * check and an abort listener that is used to find out whether the user has
 * aborted the current model validation run. In this case the check also
 * should be aborted. This is only useful for long running checks.
 *
 * The result of the check is an object of type CheckResult (or any other type
 * implementing the ICheckResult interface). This result object contains the
 * problems that were found during the check, i.e. that the unique name of the
 * checked element does not start with 'feature'.
 *
 * @param element
 * The element to check.
 * @param listener
 * The abort listener.
 * @return ICheckResult with a vector of problems if the check fails.
 */
 public ICheckResult check(IPVElement element, ICheckAbortListener listener) {
 /*
 * Create an empty CheckResult object. If no problem is added to the result
 * object, then this is interpreted as success by the model validation
 * framework, i.e. the element's unique name starts with 'feature' as
 * claimed by the check.
 */
 CheckResult result = new CheckResult();
 /*
 * Ensure that the element is valid and has a non-empty unique name. Family
 * model elements do not need to have a unique name. Since this check is
 * also applicable for family models, simply ignore elements that have no
 * unique name.
 */
 if (element != null && element.getName().length() > 0) {
 /*
 * Get the unique name of the element. This is name that is to be checked
 * in the next step.
 */
 String name = element.getName();
 if (name.startsWith("feature") == false) { //$NON-NLS-1$
 /*
 * The unique name of the element does not start with 'feature'. This
 * means that the check is failed. To let the user know that the check
 * failed and what exactly is wrong, a problem description is created
 * represented by a CheckProblem object.
 *
 * The first argument of the constructor of class CheckProblem is the
 * name of the check, followed by the check type (an element check),

pure::variants Extensibility Guide

15

 * followed by a unique problem code for this problem, followed by the
 * severity of the problem.
 */
 CheckProblem problem = new CheckProblem(element.getModelContainer(), getName(),
 CheckConstants.ELEMENTCHECK_TYPE, "CheckElementUniqueNameExample",
 CheckConstants.ERROR_SEVERITY);
 /*
 * To let the model validation framework know on which element to place
 * the problem marker for this problem, the unique ID of the checked
 * element has to be set in the problem description.
 */
 problem.setElementID(element.getID());
 /*
 * This message is shown to the user for instance as the label of a
 * corresponding problem marker in the Problems View.
 */
 problem.setMessage(MessageFormat.format(Messages.CheckElementUniqueNameExample_3,
 name));
 result.addProblem(problem);
 }
 }
 return result;
 }
 ...

In the next step the new check must be registered as an Extension for the Model Validation Framework. For this
purpose open the file plugin.xml with the Plug-in Manifest Editor again and switch to the Extensions page. Click
the Add button to select com.ps.consul.eclipse.ui.checks.Checks extension. After press Finish button the new
check extension is added to the extensions list. The Check-Extension is shown in Figure 10, “Check-Extension”.

Figure 10. Check-Extension

Since each check has a specific category (like whole model or single element check) the example check also needs
an extension for the category of the check. Select com.ps.consul.eclipse.ui.checks.CheckCategory extension
from the extensions list. The CheckCategory-Extension is shown in Figure 11, “CheckCategory-Extension”.

Figure 11. CheckCategory-Extension

Now a new Category and a new Check can be added to the Extensions. Right-click on the check extension and
choose New -> ElementCheck from the context menu. In the description field add a description for the new check.
Fill in the other fields as shown in Figure 12, “New ElementCheck”. class is the path the check class, modeltypes
is used to specify for which model types the check is applicable, and category specifies the check category the
check belongs to.

pure::variants Extensibility Guide

16

Figure 12. New ElementCheck

Right-click on the category extension and choose New -> Category from the context menu. Add a description and
fill in the other fields as shown in Figure 13, “New Category”.

Figure 13. New Category

Testing the new Check

For testing the new check CheckElementUniqueNameExample the plugin has to be installed. Therefor two different
possibilities exist. Either the plugin is exported as Deployable Plugin and installed into pure::variants. Or an Eclipse
Runtime is started using the Check Example plugin. This approach is described in the Eclipse help in chapter PDE
Guide->Getting Started->Basic Plug-in Tutorial->Running a plug-in. How to export and install the plugin as a
Deployable Plugin is described in the PDE Guide->Getting Started->Basic Plug-in Tutorial->Exporting a Plugin.

After the Runtime is started or the Deployable Plugin is installed open the Preferences by choosing Win-
dow->Preferences from the Eclipse menu. Change to page VariantManagement -> Model Validation where the
registered checks can be configured and activated (see Figure 14, “New Check Configuration”).

Figure 14. New Check Configuration

After closing the preferences open for instance a feature model. Then click on button Validate Model in the Eclipse
toolbar. Figure 15, “Validated Model” shows a sample feature model where the check has found three problems.
On the left side of the model editor markers are shown for each problem in the model, placed on the corresponding
elements. The whole list of problems also is shown in the Problems View.

pure::variants Extensibility Guide

17

Figure 15. Validated Model

After the check is tested, the next step is to write a quick fix for the problems found by the check (if possible
and/or needed).

Writing the Quick Fix Implementation

After a model is validated and problems were found in the model, the user can apply automatic quick fixes for
these problems if available. This chapter explains how a quick fix can be provided for problems found by a check,
and how the quick fix can be connected to the check class.

In the package com.ps.pvesdk.examples.modelvalidation.plugin create a new Java class with name
CheckElementUniqueNameExampleQuickFix.java. This class has to be derived from the class CheckQuick-
Fix. Each quick fix class has a getLabel()-Mathod, getImage()-Mathod and a getDescription()-Method, where
the functionality of the check is explained. See the following code.

public class CheckElementUniqueNameExampleQuickFix extends CheckQuickFix2 {
 /**
 * This is the label of the quick fix shown in the list of available quick
 * fixes for a problem.
 */
 private String m_Label = Constants.EMPTY_STRING;

 /**
 * This method is called by Eclipse to get the label for a quick fix. This
 * label is shown in the in list of available quick fixes for a problem and
 * shall briefly explain what the quick fix does.
 *
 * @return The label string.
 */
 @Override
 public String getLabel() {
 return m_Label;
 }

 /**
 * This method is called by Eclipse to show the description of a quick fix.
 * The description shall explain in detail what the quick fix does.
 *
 * @return The description string.
 */
 @Override
 public String getDescription() {
 /*
 * For simple quick fixes it is not necessary to provide a detailed
 * description. If the label is self-explanatory it may also be used as the
 * description text.
 */
 return m_Label;
 }

 /**
 * This method is called by Eclipse to get the image for a quick fix. A quick
 * fix does not need to have an image. If it has not an image, this method
 * simply can return null. The image is shown in the list of available quick
 * fixes right before the label of the quick fix.
 *

pure::variants Extensibility Guide

18

 * The image shall give the user a hint what kind of operation is performed by
 * the fix, e.g. changing, creating, or removing something.
 *
 * @return The image of the quick fix.
 */
 @Override
 public Image getImage() {
 /*
 * This quick fix does a change, i.e. it changes the unique name of an
 * element. Thus, a change image is chosen (ICheckImages.CHANGE_IMG).
 */
 ComposeImageManager im = UiPlugin.getDefault().getImageManager();
 return im.getImage(ICheckImages.CHANGE_IMG);
 }

 ...

The initialize()-method initializes the quick fix by evaluating the given problem marker containing the description
of the problem to fix.

/**
 * This method is called by the check to initialize the quick fix object. From
 * the given problem marker the quick fix gets the information about the
 * current model and the model element that was checked. With this information
 * it can create a meaningful label and description for the quick fix.
 *
 * @param marker
 * The problem marker.
 * @param model
 * The model.
 */
 @Override
 public void initialize(IMarker marker, IPVModel model) {
 /*
 * Get the element that has the problem and that needs to be fixed. For this
 * purpose the class VariantMarkerResolver is used that provides various
 * useful methods to get information from a problem marker. In this case
 * getRelatedElement is used to get the checked element.
 */
 IPVElement element = VariantMarkerResolver.getRelatedElement(marker, model);
 if (element != null) {
 /*
 * Using the element a meaningful label for the quick fix can be created.
 */
 m_Label = MessageFormat.format(Messages.CheckElementUniqueNameExampleQuickFix_1,
 new Object[] { element.getName(), "feature" + element.getName() }); //$NON-NLS-1$
 }
 }

Each quick fix has a run()-method that is called when the quick fix is applied. It implements the quick fix func-
tionality, i.e. adding the string feature to the unique name of the element for which the given problem marker is
delivered. The following code shows how the quick fix is implemented.

 /**
 * This method is called by Eclipse to perform the quick fix if the user has
 * chosen it from the list of the available quick fixes for a problem. The
 * problem is described in the given problem marker.
 *
 * This quick fix prepends 'feature' to the unique name of a model element.
 * For this purpose it has to get the checked element, has to calculate the
 * new unique name, and has to set the new unique name to the element. If the
 * quick fix succeeds it has to remove the problem marker to show the user
 * that the problem is fixed.
 *
 * @param marker
 * The problem marker.
 * @param op
 * The {@link ModelOperation}.
 * @throws CoreException
 */

pure::variants Extensibility Guide

19

 @Override
 public void run(IMarker marker, ModelOperation op) throws CoreException {
 /*
 * Get the checked element to change its unique name. As explained above,
 * first the model has to be opened and then the element can be got from the
 * marker.
 */
 IPVElement element = VariantMarkerResolver.getRelatedElement(marker, op.getModel());

 /*
 * Calculate the new unique name by prepending 'feature' to the original
 * unique name of the element.
 */
 String newname = "feature" + element.getName(); //$NON-NLS-1$
 /*
 * Changes on the element cannot be performed directly. Instead the element
 * has to be put into changing mode.
 */
 Element changed = op.changeElement(element);
 /*
 * Now the name can be set using the Model API.
 */
 changed.setName(newname);
 /*
 * The changes are executed by calling the perform() method of the
 * ModelOperation. After that call, the model changes are committed.
 */
 op.perform();
 }

For connecting the quick fix with the example check, two methods have to be added to the check class. The first
method, hasResolutions(), has to return true if there are quick fixes for problems reported by the check. The
second method, getResolutions(), returns the available quick fixes and is only called when hasResolutions() has
returned true.

 /**
 * This method is called by the model framework to find out if there are any
 * quick fixes available for the given problem marker. The marker contains all
 * the information about the problem to fix. This method is only called for
 * markers describing problems that are created by this check.
 *
 * If hasResolutions returns true, the model validation will call
 * getResolutions to get the quick fixes for the given problem. These quick
 * fixes are shown to the user and invoked by the user.
 *
 * @param marker
 * The problem marker.
 * @return True if there are any quick fixes available.
 */
 @Override
 public boolean hasResolutions(IMarker marker) {
 // There is a quick fix for this problem (see below).
 return true;
 }

 /**
 * This method is called by the model validation framework if hasResolutions
 * returned true for the given marker. It is used to return the quick fixes
 * for the problem described by the problem marker. This method is only called
 * for markers describing problems that are created by this check.
 *
 * The quick fixes that are returned by this method are objects of classes
 * implementing the ICheckQuickFix interface. Each check can provide its own
 * quick fix class that can be returned this way. There are no limitations on
 * what a quick fix can do to fix the problem. It may open dialogs or
 * automatically fix the problem without any user interaction.
 *
 * @param marker
 * The problem marker.
 * @return An array of ICheckQuickFix objects.
 */

pure::variants Extensibility Guide

20

 @Override
 public IMarkerResolution[] getResolutions(IMarker marker) {
 /*
 * This vector is used to collected the quick fixes for the problem created
 * by this check. There are two quick fixes. The first prepends 'feature' to
 * the unique name of the checked element. The second is a so-called multi
 * quick fix, that applies the first quick fix to all problems with the same
 * unique error code, i.e. to all problems with the error code
 * "CheckElementUniqueNameExample" (see above). After a quick fix is chosen
 * by the user the corresponding problem marker is automatically removed.
 */
 List<ICheckQuickFix> resolutions = new Vector<ICheckQuickFix>();

 /*
 * The quick fix for the problem created by this check is implemented by
 * class CheckElementUniqueNameExampleQuickFix implementing the
 * ICheckQuickFix interface. It simply prepends the missing 'feature' to the
 * unique name of the element.
 */
 CheckElementUniqueNameExampleQuickFix fix = new CheckElementUniqueNameExampleQuickFix();
 /*
 * A quick fix object always is initialized using the marker from which it
 * gets all the information needed to fix the the problem.
 */
 fix.initialize(marker);
 resolutions.add(fix);
 ...

If a model contains several problems of the same type, then a MultiQuickFix can be added for fixing these
problems at once. For this a new MultiQuickFix()-object has to be created and added to the resolutions vector.

 /*
 * Class MultiQuickFix also implements the ICheckQuickFix interface but does
 * not have to be implemented by the user.
 */
 MultiQuickFix multifix = new MultiQuickFix(fix.getID());
 /*
 * A quick fix also can have an image that is shown to the user in the list
 * of the available quick fixes for a problem. Since this quick fix changes
 * the unique name of an element, an image signaling a change is used, i.e.
 * ICheckImages.CHANGE_IMG. This image does not have to be set for the above
 * quick fix because it sets this image by its own.
 */
 ComposeImageManager im = UiPlugin.getDefault().getImageManager();
 multifix.setImage(im.getImage(ICheckImages.CHANGE_IMG));
 /*
 * This message is shown to the user in the list of the available quick
 * fixes, right after the above image. It is the textual description of what
 * the quick does.
 */
 multifix.setLabel(Messages.CheckElementUniqueNameExample_4);
 /*
 * It is also initialized using the marker. From the marker it gets the
 * information which problems it has to fix using the unique problem code of
 * the problem. Thus the multi quick fix executes all the fixes returned by
 * this method, except of this multi quick fix.
 */
 multifix.initialize(marker);
 resolutions.add(multifix);

 /*
 * ICheckQuickFix implements the IMarkerResolution2 interface which expects
 * an array of IMarkerResolution objects as the result of this method.
 */
 return resolutions.toArray(new IMarkerResolution[resolutions.size()]);

Testing the new Quick Fix

This chapter shows how the problem reported by the example check can be fixed automatically using the provided
quick fix.

pure::variants Extensibility Guide

21

Install the plugin and change the preferences as described in chapter 4. Then open a model and click on the Validate
Model button in the toolbar of Eclipse. If the check found elements in the model with unique names not starting
with 'feature', then markers are shown on the left side of the editor and in the Problems View.

If quick fixes are available for a problem, then a yellow lamp is shown at the corresponding problem marker. Left-
clicking on such a marker opens a window with the list of available quick fixes for the problem (see Figure 16,
“Resolve Problem”). For the example check two quick fixes are shown. The first renames the corresponding
element by predending 'feature' to its unique name. The second is the multi quick fix that applies all the quick
fixes for problems found by the example check.

Figure 16. Resolve Problem

Deploying the new Check

To be able to install the new plugin in an Eclipse installation, the plugin has to be exported as "Deployable Plu-
gin". How to export and install the plugin as a Deployable Plugin is described in the PDE Guide->Getting Start-
ed->Basic Plug-in Tutorial->Exporting a Plugin.

4.3. Creating a pure::variants Model from a CSV File

Overview

This tutorial shows the use of the pure::variants Synchronization Framework for creating and synchronizing
pure::variants models from external data sources. The tutorial example is the import and update of feature models
from CSV1 files.

The synchronization framework is used by several pure::variants extensions like the Connector for IBM Rational
Doors and the Connector for Source Code Management.

The presented implementation is an Eclipse plugin consisting of two parts, the import function and the update
function. The importer consists of a wizard that is registered as a pure::variants Importer and appears on the
menu point Import->Variant Models or Projects->Simple CSV Import (Example). This wizard shows how a CSV
file can be mapped to a pure::variants model. The feature model produced by the import can be compared with
the original CSV file with the help of the update function. Changes in the CSV file can be visualized and merged
into the imported model.

The tutorial is structured as follows. Chapter 2 describes how a new Eclipse plugin is created. Chapter 3 provides a
short introduction to the synchronization framework and explains how to map the information from a CSV file to a
pure::variants model. Chapter 4 shows how to create the pure::variants model from the mapped CSV information
and it shows the steps needed to provide the import wizard. Chapter 5 explains the implementation and registration
of a compare provider implementing the update function. Finally in chapter 6 it is shown how to use the new import
wizard to import a CSV file. And it is shown how to use the model synchronization functionality of pure::variants
to compare and update the imported model with the CSV file.

The reader must have basic knowledge of pure::variants and the Java Plugin Development under Eclipse. For
more information about the Eclipse Plugin concept see chapter Plattform Plug-in Developer Guide in the Eclipse
Help.

1CSV - Character Separated Values

pure::variants Extensibility Guide

22

The plugin described in this tutorial is part of the pure::variants SDK. It can be installed by choosing New->Exam-
ple from the Eclipse File menu, and then Examples->Variant Management SDK->Extensibility Example Plugins-
>com.ps.pvesdk.examples.import.csv.plugin.

Setting up the Plugin Project

The first step to set up a new integration of an external data source, a CSV file in this case, is to create a new
Eclipse plugin. This plugin contains the Java implementation of the importer and updater as well as the registration
entries for the import wizard and the compare provider.

Choose item File->New->Project from the Eclipse menu and select "Plugin Project" in the list of available project
wizards, see Figure 17, “Plug-in Project”.

Figure 17. Plug-in Project

The name of the new project shall be "com.ps.pvesdk.examples.import.csv.plugin". All other settings should be
made according to Figure 18, “Create new Plug-in Project”. Please note that the plugin has to work with an eclipse
version and must not work with OSGI framework.

Figure 18. Create new Plug-in Project

pure::variants Extensibility Guide

23

Click on button Next to switch to the "Plug-in Content" page. Apply the settings as shown in Figure 19, “Plug-
in Content”.

Figure 19. Plug-in Content

The new plugin project is created after clicking on Finish. It contains a source directory for the Java implementa-
tion of the importer, the plugin description file plugin.xml, and the file SimpleCSVImportPlugin.java defining
the plug-in's life cycle class.

To be able to use the synchronization framework some additional plugin dependencies have to be specified. Open
file plugin.xml with the Plug-in Manifest Editor by double-clicking on it. On the "Overview" page you can see
the fundamental information about the project. Switch to the "Dependencies" page and click on the Add button
to add the plugins listed below (see Figure 20, “Plug-in Dependencies”).

Figure 20. Plug-in Dependencies

The plugin is now ready for the next step, i.e. using the synchronization framework to import a CSV file.

Creating the model from the CSV file

Now the information about the model elements have to be imported from the CSV file. The CSV file must fulfill
some fundamental assumptions for this example. Each model element has a valid variation type (for example

pure::variants Extensibility Guide

24

ps:optional), a unique ID, and a unique name (unique in the model). For each element the ID of the parent element
is needed to build the hierarchy of the model. Thus, the CSV file needs the following 4 columns: Unique ID,
Unique Name, Type, Parent Unique ID. All other columns are interpreted as element attributes in this example.
Following steps are necessary to construct a model from a CSV file:

1. Open the CSV file and read the first line containing the column headers.

2. Read the other lines of the file containing the element definitions.

3. Create the elements using the information from the lines of the CSV file.

4. Create the model structure, i.e. the element hierarchy, using the parent element information.

Example 1. initFileContent() in ImportRunner.java

// Open the CSV file
BufferedReader reader = new BufferedReader(new FileReader(file));
// Read the first line
String tableHeader = reader.readLine();
// Parse the first line and identify the columns
String[] columns = m_Parse.parse(tableHeader);
// Read all other lines
while(reader.ready()){
 // Read the next line
 String line = reader.readLine();
}

Creating an Element

With knowledge of the columns in the CSV file, an Element can be created for each line. First, the columns of
a line have to be identified. Then, if the values for Unique ID, Unique Name and Type are known, a new empty
element can be created and the values can be set.

Example 2. createElement() in ImportRunner.java

// Create an empty element
Element newElement = Operations.makeElement(ModelConstants.FEATURE_CLASS,
 ModelConstants.ATTRIBUTES_FEATURE_TYPE);
// Parse the current line
String[] values = m_Parse.parse(line);
// Find the element properties
String ID = getID(values)
String type = getType(values)
String uniqueName = getUniqueName(values)

// Set the unique element ID
 newElement.setID(new ID(ID));
// Set the element type
newElement.setType(type);
// Set the unique name of the element
newElement.setName(uniqueName)

Additionally, the value for Parent Unique ID must be stored for later use. Later the unique IDs of the parent and
the current element are used to create the element hierarchy. If no parent ID is given for an element, then this
element is taken as the root element of the model. There must be exactly one root element in a pure::variants
feature or family model.

Adding the attributes to an Element

All columns other than the columns described above are interpreted as element's attributes. The name of the
attribute is gathered from the column header. The values are defined in the lines. Only constant attributes are
supported by this example.

pure::variants Extensibility Guide

25

private void addProperties(CSVEntry entry, String[] columns, Element element) {
 LinkedHashSet<String> properties = new LinkedHashSet<String>(Arrays.asList(columns));
 // Remove all columns entries that are already added.
 properties.removeAll(Arrays.asList(getRequiredColumns()));

 for (Iterator<String> iter = properties.iterator(); iter.hasNext();) {
 String currentColumn = iter.next();
 String value = (String) entry.get(currentColumn);
 if (currentColumn.equals(ATTR_CLASS)) {
 if (value.length() > 0) {
 element.setKlass(value);
 }
 }
 else if (currentColumn.equals(ATTR_DESCRIPTION)) {
 Operations.setDesc(element, value, null, element.getModelContainer().getMimeType());
 }
 else if (currentColumn.equals(ATTR_VISIBLENAME)) {
 // Attribute "Visible Name" is used as visible name
 if (value.length() > 0) {
 Operations.setVName(element, value);
 }
 }
 if (m_NameValidator.isValid(currentColumn) == null) {
 Operations.setPropertyValue(element, currentColumn,
 ModelConstants.ATTRIBUTES_STRING_TYPE, value);
 }
 }
 }

Creating a pure::variant model

The pure::variants model is created using the ModelCreator class.

// Create a new model using
m_Model = ModelCreator.createModel(id, name, type, rootid, rootname);

Creating the model structure

After all elements are created, the hierarchy of the elements has to be created. The starting point for this process
is the root element of the model, i.e. the element that has no parent ID. The ModelOperation has a method

addElement(child, parent, relType)

With this method the child elements of an element are specified. Beginning with the root element all elements are
added to the element hierarchy step-by-step.

Adding the Wizard

The last step for realizing the import is providing the import wizard. The import wizard is used to select the CSV
source file, the target model name and location, and to start the import process. Therefore a new wizard has to be
added to the list of pure::variants import wizards.

Following steps have to be performed:

1. Add the extension point com.ps.consul.eclipse.ui.pvImport.VariantImportWizards to extensions list of the plu-
gin

2. Create a new class named SimpleCSVImportWizard and register it as a "wizard" extension at this extension point

3. Implement a wizard page named TargetSelectionPage for the SimpleCSVImportWizard

4. Implement the performFinish() method of the SimpleCSVImportWizard

To register a wizard the file plugin.xml has to be opened in the Plug-in Manifest Editor. The "Extensions" page
shows all extensions the plugin provides to the eclipse architecture.

pure::variants Extensibility Guide

26

Figure 21. Adding the Import Wizard extension

The right side of Figure 21, “Adding the Import Wizard extension” shows the attributes describing the new wizard.
Provide as name "Simple CSV Import Wizard (Example)" and as description "Creates feature models from a csv
file". The icon field is optional and does not need to be filled in. Once Eclipse is notified about the wizard the
wizard class has to be implemented. Click on the "class" field name and the "New Class" wizard appears.

Figure 22. Creating an Import Wizard

The wizard class should be named SimpleCSVImportWizard. The class has
to extend class org.eclipse.jface.wizard.Wizard and implement the interface
com.ps.consul.eclipse.ui.pvimport.IVariantImportWizard. Click on Finish to create the new class.

Once the wizard class is created, a wizard page has to be implemented that is displayed in the wizard. The page
should allow to select a target file for the imported model in the file system. Also the page should provide a file
selection dialog that allows the user to select the CSV source file. The wizard itself is finished by clicking on the
Finish button. If the button is clicked the wizard's performFinish() method is called from by Eclipse environment.

The performFinish() method collects the values entered in the target selection page. Then a new ImportRunner
is created and initialized with the collected values. Finally the import process is started.

pure::variants Extensibility Guide

27

Example 3. performFinish() in SimpleCSVImportWizard.java

 /**
 * This method is called when the Finish button of the wizard is pressed.
 */
 @Override
 public boolean performFinish() {
 IResource file = null;
 File sourceFile = m_TargetPage.getSourceFile();
 IPath container =
 ResourcesPlugin.getWorkspace().getRoot().getLocation().append(m_TargetPage.getSelection());
 IContainer res =
 ResourcesPlugin.getWorkspace().getRoot().getContainerForLocation(container);

 String fileName = m_TargetPage.getFileName();
 /*
 * If file already exists, ask the user if the existing file shall be
 * replaced.
 */
 if (handleExistingResource(res, fileName)) {
 try {
 ImportRunner csvimport = new ImportRunner(null, fileName, sourceFile, res, new
 CSVParser());

 IPVModel model = csvimport.importModelFromCSVFile();

 file = Utils.getResourceFile(res, fileName);

 // Import to the server
 if (file != null && model != null) {
 // Add model nature to enable synchronization
 NatureModeler.addNature(model, NATURE_CSV_IMPORT_EXAMPLE);

 // created model is imported by the server
 if (ConsulProjectEvaluator.isRemoteProject(res.getProject()) == false) {
 /*
 * Created model is imported by the local core server, if is local
 * project.
 */
 m_ModelURL = URLUtil.decodeURL(file.getLocation().toFile().toURI().toURL());
 ConsulCorePlugin.getDefault().getModelManager().importModel(model, m_ModelURL,
 null);
 }
 else {
 // if project is remote project, model is imported to remote server
 RemoteProject rp =
 ConsulProjectEvaluator.getRemoteProjectInfo(res.getProject()).getProject();
 RemoteEntry parent =
 rp.getEntryForMappedResourceRelativeName(res.getProjectRelativePath().toOSString());
 rp.importModel(model, parent);
 }
 }
 else {
 throw CoreManager.makeCoreException(0, "The properties could not be detected");
 }
 }
 catch (Exception e) {
 IStatus status = Utils.log(IStatus.ERROR, Messages.SimpleCSVImportWizard_4, e);
 ErrorDialog.openError(new Shell(), Messages.SimpleCSVImportWizard_5,
 Messages.SimpleCSVImportWizard_6, status);
 return false;
 }
 finally {
 /*
 * Independent on any exception, let refresh the created models
 * container.
 */
 refreshProject(res);
 }
 }
 return true;
 }

pure::variants Extensibility Guide

28

Updating the imported model

After implementing the import functionality it is now explained how to provide the update functionality. The model
imported from the CSV file can be compared with the original CSV file. The changes between the model and the
CSV file are shown in the Compare Editor and can also be merged. For comparing two models it is substantial
that both models have the same model ID. All model elements are compared on the basis of its IDs. Two elements
are identified as pair and can only be compared if both have the same ID. Otherwise an "Element Removed" and
an "Element Added" action indicates the change. The same applies to element properties, relations, constants, etc.

Following steps have to be performed to add the compare functionality:

• Add the extension point com.ps.consul.eclipse.ui.viewer.tree.diff.CompareProvider to the plugin's extension list

• Create a new class implementing the interface IConsulModelCompareProvider2

• Register the new class as a "provider" extension at the Compare Provider extension point

Register a Compare Provider

In pure::variants a Compare Provider has to be registered to compare a model. For this purpose open the file
plugin.xml again. Then change to page "Extensions".

Figure 23. Extensions - Compare Provider

Click on button Add to add a new extension for the extension point
com.ps.consul.eclipse.ui.viewer.tree.diff.CompareProviders. Select the extension point and choose New-
>provider from the context menu. On the right side of the "Extensions" page the required settings must be
made. The attribute "class" specifies the path to the class implementing the IConsulModelCompareProvider2.
For the attribute "natureid" insert the Nature ID as the one used for creating the imported models, i.e.
"com.ps.consul.eclipse.sdk.examples.wizards.CSVImportNature". The description and name are freely selectable.

Implementing the CompareProvider

Each comparison between two models must implement the IConsulModelCompareProvider2 interface.
For this add a new class to the plugin. This class implements the interface and has to extend class
com.ps.consul.eclipse.ui.viewer.tree.diff.editor.ConsulModelCompareProvider. The models to com-
pare should be opened with the method initialize(input:IEditorInput). The left model, i.e. the imported mod-
el, can be got with the following code

pure::variants Extensibility Guide

29

private File getFileForInput(IEditorInput input) {
 File result = null;
 if (input instanceof FileEditorInput) {
 result = ((FileEditorInput) input).getFile().getLocation().toFile();
 }
 return result;
}

Then the file can be opened with the pure::variants model manager:

ConsulCorePlugin.getDefault().getModelManager()openModel(URL url)

The model manager opens the model file and creates a corresponding IPVModel object. The right model must be
temporarly produced from the CSV file. For this purpose, the same steps can be performed as for importing a model
from the CSV file. The only difference is, that it is not necessary to import the model to the local or remote server.

// Create a pure::varaint's mode and add nature
ImportRunner csvModel = new ImportRunner(...);
IPVModel model = csvModel.importModelFromCSVFile();

The next two method calls pass the models to the compare editor:

setLeftModel(left);
setRightModel(right);

Finally the text identifying the models in the compare editor has to be defined. The initialize method must return
true to let the compare editor evaluate the models and show the changes.

Note that all models opened with the pure::variants model manager must also be closed with this model manager:

IModelManager.safe.closeModel(IPVModel model)

Using the CSV Example Plugin

Now it is time to test the importer and update functionality. For testing the plugin two different possibilities exist.
Either the plugin is exported as Deployable Plugin and installed into pure::variants. Or an Eclipse Runtime is
started using the CSV Example plugin. This approach is described in the Eclipse help in chapter PDE Guide -
> Getting Started -> Basic Plug-in Tutorial -> Running a plug-in. How to export and install the plugin as a
Deployable Plugin is described in the PDE Guide -> Getting Started -> Basic Plug-in Tutorial -> Exporting a
Plugin.

Using the CSV Import

To demonstrate the use of the CSV importer, a new pure::variants project should be created. In the context menu
of the Variant Projects view choose New->Variant Project.

Figure 24. New pure::variants Project

pure::variants Extensibility Guide

30

The models created from the CSV files can be imported into the new project. Select the new project in the Variant
Project View. Then choose Import->Variant Models or Projects->Simple CSV Import (Example) from the context
menu. This opens the CSV Import wizard.

Figure 25. CSV Import Wizard

In the upper part of Figure 25, “CSV Import Wizard” the target project or directory for the imported model has to
be selected. In the lower part, the model and the file names have to be specified. At last the CSV input file has to be
selected using the button Choose. After clicking on Finish the performFinish() method of class SimpleCSVIm\
portWizard is called and the import starts. This method executes the algorithm described in section 4. It uses the
ImportRunner to create a pure::variants model from the CSV file and saves it into the target project or directory.

Synchronizing an imported model

The pure::variants synchronization functionality is invoked by opening the imported model and clicking on the

Synchronize Model button in the Eclipse tool bar. Then choose the original CSV file. The compare editor opens
showing the changes, if there are any.

pure::variants Extensibility Guide

31

Figure 26. Compare Editor - Comparing a Model with a CSV file

5. Examples

5.1. Overview

Most examples consist of two eclipse projects. One can be used to build an eclipse plugin which has to be installed
in the Eclipse plugins folder (these projects have the suffix .plugin) and sample pure::variants projects (these
projects have the suffix .pvproject). These projects can only be used when the respective Eclipse plugin is installed.

To ease the installation process, installed SDK provides two example packages installable from "New"->"Ex-
amples"->"Variant Management SDK". The Extensibility Example Plugins package contains all eclipse plugin
projects and installs them into the workspace when selected. The Extensibility Example Projects package contains
all example projects.

5.2. Metrices Plug-in Example

This example plugin is part of the pure::variants Extensibility Guide (PVESDK).

The name of the plugin is com.ps.pvesdk.examples.metrics

Purpose of the example

The plugin demonstrates how a new model metric can be implemented.

The example collects some simple statistical information about a model and prepares the data structure to be shown
in the metrics view. It counts the number of elements in a model and also counts for each used element type the
number of occurences in the model.

The example registers the class com.ps.pvesdk.examples.metrics.Example as metrics provider for the
com.ps.consul.eclipse.metrics.ModelMetrics (in plugin.xml). The complete implementation is in Example.java

Using the example

The plugin has to be exported as "Deployable plug-in or fragment" and then installed inside the eclipse installation.
See the Eclipse PDE Guide or the pure::variants Extensibility Guide for more information on the export procedure.

pure::variants Extensibility Guide

32

An easy alternative is to start a "Runtime Workbench". To do this, switch to the "Plug-in Development" perspective
("Window"->"Perspective"->"Other") and select "Run...". Here create a "Run-time workbench" configuration.
Make sure that "Clear workspace before launch" is deselected.

The plugin adds a new entry ("PVESDK Example...")to the Metrics list in "Window"->"Preferences"->"Variant
Management"->"Metrics". Mark the checkbox and close the preference page. Open a feature or family model and
select "Show metrics" from the context menu. The dialog will show (among other) the example metric result.

Related Documentation

The Metrics API is described in the pure::variants Extensibility Guide available in the Eclipse online help system.

5.3. Feature Element Details Editor Tab Plug-in Example

This example plugin is part of the pure::variants Extensibility Software Development Kit (PVESDK).

The name of the plugin is com.ps.pvesdk.examples.detailseditor.

Purpose of the example

The plugin demonstrates how a additional editor tab for feature or family model editors can be implemented. It
also shows how to connect to the ModelUpdate service, to provide additional functionality on model changes.

The example's code is derived from the feature models details tab and can be used as starting point for custom
editors.

Using the example

The plugin has to be exported as "Deployable plug-in or fragment" and then installed inside the eclipse installation.
See the Eclipse PDE Guide or the pure::variants Extensibility Guide for more information on the export procedure.

An easy alternative is to start a "Runtime Workbench". To do this, switch to the "Plug-in Development" perspective
("Window"->"Perspective"->"Other") and select "Run...". Here create a "Run-time workbench" configuration.
Make sure that "Clear workspace before launch" is deselected.

The plugin provides a new tab in the feature model editor "Detail Example" and has also an own preference page
"Example Details Page" in the section "Variant Management".

Related Documentation

The used pure::variants Java API and extension points are described in the pure::variants Extensibility Guide
available in the Eclipse online help system.

5.4. SimpleFeature Editor Plug-in Example

This example plugin is part of the pure::variants Extensibility Software Development Kit (PVESDK).

The name of the plugin is com.ps.pvesdk.examples.element.simpleeditor.

Purpose of the example

The example shows how to extend the pure::variants Eclipse editor's user interface with custom dialogs for user
specific model elements.

Plugin Structure

The plugin uses the pure::variants extension point "com.ps.consul.eclipse.ui.ElementEditors" to register its ability
to act as editor and wizard for feature elements (elements of class "ps:feature") of type "ps:simplefeature". This
is done in the file "plugin.xml" (page Extensions).

pure::variants Extensibility Guide

33

The basic code for pure::variants Eclipse plugins is in class "SimpleFeatureEditor". It is respon-
sible for initialization and implements the necessary plugin interface for custom element dialogs
"com.ps.consul.eclipse.ui.dialogs.ICustomElementEditor".

The code handling the UI presentation and element creation/updating is divided into several classes. The class
"SimpleFeatureDialog" is the main class, the other classes are in the sub package panes.

5.5. Modeling EventHandler Plug-in Example

This example plugin is part of the pure::variants Extensibility Software Development Kit (PVESDK).

The name of the plugin is com.ps.pvesdk.examples.modeling.eventhandler.plugin.

Purpose of the example

The example shows how to implement a ModelUpdateListener, which can be used to check updates to the model
before the are performed to the model. This can be used to avoid unintended changes to the model.

The example uses the ModeUpdateListener to check, if an element has a visible name. If the visible name is
missing the user is informed and can decide to not apply the change to the model.

Additionally the user is asked to use the unique name as visible name for each newly created element, which does
not have a visible name defined yet.

Using the example

The plugin has to be exported as "Deployable plug-in or fragment" and then installed inside the eclipse installation.
See the Eclipse PDE Guide or the pure::variants Extensibility Guide for more information on the export procedure.

An easy alternative is to start a "Runtime Workbench". To do this, switch to the "Plug-in Development" perspective
("Window"->"Perspective"->"Other") and select "Run...". Here create a "Run-time workbench" configuration.
Make sure that "Clear workspace before launch" is deselected.

Related Documentation

The used pure::variants Java API and extension points are described in the pure::variants Extensibility Guide
available in the Eclipse online help system.

34

	pure::variants Extensibility Guide
	Table of Contents
	1. Introduction
	1.1. Extensibility Options
	1.2. Installation of the SDK Examples

	2. pure::variants Extension
	2.1. pure::variants plugin templates
	2.2. Use Custom Element Icons
	2.3. Deploy JavaScript File with pure::variants

	3. Reference
	3.1. Model Properties
	ps:evaluation:properties
	ps:evaluation:relation:mapping
	ps:diff:rebuilders
	ps:admin:properties:disabled

	3.2. pure::variants Client Transformation Modules
	Autosar Feature Model Exchange Format (ARXML) Transformation
	AUTOSAR Transformation Module
	CaliberRM Module
	External Capella Transformation
	Simulink Configuration Propagator
	Simulink Configuration m-File Writer
	Creo Variation Module
	IBM Rational DOORS Module
	IBM Rational DOORS Configuration Exporter
	IBM Rational DOORS NG Module
	EMF Feature Mapping Module
	HTML Transformation Module
	Reuse Transformation
	Ant Build Module
	External Program Runner
	Makefile Generator
	Action List Generator
	Action List Runner
	Java Script Transformation Module
	Element Cluster Report
	HP Quality Center Test Set creation module
	HP Quality Center Test Folder creation module
	PTC Integrity Module
	JAMA Connect Transformation Module
	MagicDraw Transformation Module
	Microsoft Word Module
	Microsoft Excel Module
	Polarion Configuration Exporter
	Polarion Variants Module
	IBM Rational Rhapsody Module
	IBM Rational Quality Manager Module
	Software Configuration Management Wrapper
	Enterprise Architect Module
	Microsoft TFS Module
	VEL Configuration Writer
	Zuken Variation Module

	4. Tutorials
	4.1. Overview
	4.2. Developing a pure::variants Model Validation Check
	Overview
	Setting up the Plugin Project
	Writing the Check Implementation
	Testing the new Check
	Writing the Quick Fix Implementation
	Testing the new Quick Fix
	Deploying the new Check

	4.3. Creating a pure::variants Model from a CSV File
	Overview
	Setting up the Plugin Project
	Creating the model from the CSV file
	Creating an Element
	Adding the attributes to an Element
	Creating a pure::variant model
	Creating the model structure

	Adding the Wizard
	Updating the imported model
	Register a Compare Provider
	Implementing the CompareProvider

	Using the CSV Example Plugin
	Using the CSV Import
	Synchronizing an imported model

	5. Examples
	5.1. Overview
	5.2. Metrices Plug-in Example
	Purpose of the example
	Using the example
	Related Documentation

	5.3. Feature Element Details Editor Tab Plug-in Example
	Purpose of the example
	Using the example
	Related Documentation

	5.4. SimpleFeature Editor Plug-in Example
	Purpose of the example
	Plugin Structure

	5.5. Modeling EventHandler Plug-in Example
	Purpose of the example
	Using the example
	Related Documentation

