pure::variants Extensibility Guide

pure-systems GmbH

Version 6.0.5.685 for pure::variants 6.0
Copyright © 2003-2024 pure-systems GmbH

2024

Table of Contents

IO [oo [0 1o o TSP 1
O 4 = 015 1 1 V@ oo 1
1.2. Installation of the SDK EXAMPIESuiiiiiiii i e e e e e e e e e e e eaneeee 2

2. PUrE:VANANES EXTENSION ...uuiiiii it ce et e e e e et e e ean e e et aeeanneeaneeeen 3
2.1. pure:variants plugin teMPIAEESovee e 3
2.2. Use CUuStOM EIEMENE TCONSeviiiiiiiii ettt e et e e et e e e eab e e e eaan e eeees 4
2.3. Deploy JavaScript File With pUre:VariantSocuuviii i e e 5

B REFEIENCE ..t et 5
T80 I Y/ oo U= (0] o 1= 11 5
3.2. pure::variants Client Transformation MOAUIESccuuiiiiiiiiii e 6

R Do = £ PP 11
T O Y= V= PP 11
4.2. Developing a pure::variants Model Validation Checkc.oveviiiiiiiiiiiiiie e 11
4.3. Creating a pure::variants Model from aCSV File.......coiiiiiiiiiii e 21

LI o 1 1o)== 31
DL, OVEIVIBIW ettt ettt e ettt e ettt e e e e et e e e et e e e e et e e e e et e e eeta e aeaes 31
5.2. Metrices PlUG-iN EXAMPIEiiiiiiii e e e e e e e e e e e e e e e 31
5.3. Feature Element Details Editor Tab Plug-in EXamplecooovviiiiiiii e, 32
5.4. SimpleFeature Editor Plug-in EXAMPIEoovniiii e 32
5.5. Modeling EventHandler Plug-in EXaMPIEoiveiiiiii e e 33

1. Introduction

This documentation describes the extensibility options of pure::variants, a software variant management system.
It is part of the pure::variants Extensibility SDK, which provides sample extensions for pure::variants and also
API documentation for interfacing with pure::variants from various programming languages.

The manual is available in online help inside the installed product as well as in printable PDF format. Get the
PDF here.

1.1. Extensibility Options

The architecture of pure::variants as a client/server application (see picture below) with an Eclipse-based user
interface provides a number of place and techniques for building extensions.

pure::variants Extensibility Guide

Figure 1. Client Server Architecture

p..v Eclipse Client

b ~ . Eclipse API

*L";E p:-v Eclipselupaas - Eclipse Extension Points
£
O
b p::v Java Core Java API
% - Java Interfaces
£
D SOAP Interface
©
Kol
= p..v Server
= C++ AP

p::v Runtime System - DLL/COM/OLE

The user interface can be extended using the standard mechanisms provided by the Eclipse platform, called exten-
sion points. Beside the already in a standard Eclipse existing extension points (for adding menu items, providing
toolbar buttons, etc.) pure::variants provides also new extension points which provide an easy way to add new
functionality to pure::variants e.g. for model import/export, element type specific wizards and editors, new editor
views.

A second layer for extensibility isthe core Java APl which provides most non-user interface related functionality.
This API can be used to interface with pure::variants from other Java-based applications, which are not built on
top of the Eclipse platform.

It isalso possible (but not advisable) to directly connect to the server using the SOAP protocol interface. In most
cases one should rely on the Java API for handling the communication.

The core functionality itself is realized in a separate application which provides a similar platform independent
extension interface asit is available in Eclipse but supports also platform specific extensibility mechanisms such
as shared libraries and COM/OLE interfaces.

All afore mentioned extensibility options are (depending on the concrete configuration) available for all
pure::variants Editions. The Integration Edition also provides the option to integrate the pure::variants core com-
ponents in own binary applications.

1.2. Installation of the SDK Examples

As in the introduction mentioned the SDK feature is provided with an APl documentation and corresponding
sample extensions. For each part of this documentation a reference to a sample extension is given if thereis one.
Installing such asampleisvery easy:

Choose in the eclipse workbench File -> New -> Example... -> Variant Management SDK. Below this category
two example wizards can be chosen:

The "Extensibility Example Plugins' - wizard and the "Extensibility Example Projects’ - wizard. To install a
project (plugin) select the desired wizard and press next. A list of all example projects (plugins) is shown. Check
the projects you wish to install and press finish.

pure::variants Extensibility Guide

To run the examples start an eclipse runtime workbench. See chapter PDE Guide->Getting Sarted->Basic Plug-
in Tutorial->Running a plug-in in the Eclipse help.

2. pure::variants Extension

2.1. pure::variants plugin templates

The pure::variants SDK provides some plugin templates. With these template you can compose your own
pure::variants importer, synchronizer and transformation. All templates are available as plugin in templatesin the
Eclipse New Plug-In Project wizard.

To use the template create anew Eclipse plugin project. Right-click in the Eclipse Projects View and choose New
-> Project -> Plug-in Project from the context menu (see Figure 2, “New Plug-in Project Wizard”).

Figure 2. New Plug-in Project Wizard

=)
Select a wizard

Create a Plug-in Project

Wizards:
type filter text

~ [= Plug-in Development ~
I’qﬁ Feature Patch
I’-{fﬁ Feature Project
=% Fragment Project
a3 Plug-in from Existing JAR Archives
L Plug-in Project
5* Update Site Project

[= SVN v

\/'_73' < Back Next = Finish Cancel

Figure 3, “Plug-in Project Settings’ shows the settings required for the plugin. Please note that the plugin hasto
work with an eclipse version and must not work with OSGI framework.

Figure 3. Plug-in Project Settings

& New Plug-in Project m] X

Plug-in Project o L
Create a new plug-in project 7

Project name: | com.ps.pvesdk.examples.modelvalidation |

Use default location
Di\workspaces\workspace38_tests\com.ps.pvesdk.examples.model | Browse..

Project Settings
Create a Java project

Source folder: | src |

Outputfolder: | bin |

Target Platform

This plug-in is targeted to run with:
| @ Eclipse version: 350rgreater v |

O an OSGi framework: Equinas

Working sets
[JA4dd project to working sets

minimal Select...

=
@ < Back Next > Finish Cancel

After pressing Next the Plug-in Content page is opened. Please apply the settings as shown in Figure 4, “Plug-
in Content Settings’.

pure::variants Extensibility Guide

Figure4. Plug-in Content Settings

& New Plug-in Project a X
Content - L
Enter the data required to generate the plug-in.

Properties

1D ‘ com.ps.pvesdk.examples.modelvalidation |
Version: [1.00 |
Name: [Model Validation Example |
Vendor: [pure-systems GmbH ~]
Execution Environment: JavaSE-1.6 ~| | Environments...

Options
E

[This plug-in will make contributions to the Ul
[Enable AP| analysis

com.ps.pvesdk.examples.modelvalidation.Activator

Rich Client Application
Would you like to create a rich client application? OYes @ Ne

@ < Back Next > Cancel

The next Page shows available Plug-In templates. Choose pure::variants Plug-in(Figure 5, “Plug-in Template
Selection”). On the next page you can choose which parts of the template you need. It is possible to use all
the template parts alone. Or to use all parts together. The later enables you to implement a complete round trip
with importing data, synchronize the external data and transform the data. It also contains model manipulation
if necessary.

Figure 5. Plug-in Template Selection

£ New Plug-in Project O X

Templates — -
Select one of the available templates to generate a fully-functioning plug-in. /

Create a plug-in using one of the templates

Available Plug-in Templates:

‘;j?Custom plug-in wizard This template provides some usefull code
[=] Eclipse toolbar contribution using e4 Ap| | Stubs for extending puresvariants:

o Editor contribution for XML files * purevariants Model Import

% Hello, World Command * puresvariants Model Synchronization

¥ Incremental project builder
[F] Menu contribution using 4:x API
% Multi-page editor

* purenvariants Model Manipualtor
* purevariants JavaClientTransformation

All parts can be used together or as single

L
(5" ODA Data Source Designer instances

% ODA Data 5 Runtime Dri
o ata source Runtime Uriver Please proceed to the next page to selected

"

% Property page the template parts to generate.
’?_I pureivariants Plug-in

4 Sample help content

i Textual editor, relying on Generic Editor
< View contribution using 3.x AP|
[] View contribution using 4.x API

@ < Back Next > Cancel

To run the examples start an eclipse runtime workbench. See chapter PDE Guide->Getting Sarted->Basic Plug-
in Tutorial->Running a plug-in in the Eclipse help.

2.2. Use Custom Element Icons

To use custom element icons for elements in pure::variants custom icons can be placed in one of the following
locations:

pure::variants Extensibility Guide

» <Eclipse Installation Directory>/configuration/com.ps.consul .eclipse.ui/images
» <Eclipse Configuration Directory>/com.ps.consul.eclipse.ui/images

* Inapluginwhich defines an image directory with the com.ps.consul.eclipse.ui.l mageDirectory extension point.
The icons have to placed in the define image directory.

Both pathes can be found in the Installation Details in the Eclipse About Dialog. In tab "Configuration”.
eclipse.nome.location is showing the Eclipse installation path and osgi.configuration.area is showing the config-
uration directory.

The icon has to be of type gif and the name of the icon file has to follow a specific scheme: element_type-
element_classMODELTY PEICON.gif

All elements in pure::variants have an element type and an element klass. Both usually have a namespace and
a name. For example ps.feature is the generic feature type. The namespace is ps and the name is feature. The
icon file name is composed of <type namespace>_<type name>-<class namespace>_<class hame>-<MODEL
TYPE>ICON.gif. MODELTY PE is either XFM or CCFM.

For a generic feature the file name is ps_feature-ps_feaure-XFMICON.gif.

2.3. Deploy JavaScript File with pure::variants

To use custom JavaScript filesin pure::variants those files can be deployed with pure::variants. The files can be
placed in on of the following locations:

 <Eclipse Installation Directory>/configuration/com.ps.consul .eclipse.ui/javascripts
 <Eclipse Configuration Directory>/com.ps.consul.eclipse.ui/javascripts

* In a plugin which defines a JavaScript scripts ScriptDir with the
com.ps.consul .eclipse.javascript.library.ScriptDir extension point.

Both paths can be found in the Installation Details in the Eclipse About Dialog. In tab "Configuration”.

eclipse.nome.location is showing the Eclipse installation path and osgi.configuration.area is showing the config-
uration directory.

3. Reference
3.1. Model Properties

ps:evaluation:properties

Settings for property handling during evaluation. This can be used to skip or pass through properties in prolog.
Thevalueisa XML structure:

<properties>
<skip class="el enent cl ass" type="el enent type" nane="property name"/>
<pass cl ass="el enent cl ass" type="el enent type" nane="property nanme"/>
</ properties>

ps:evaluation:relation:mapping

Mapping of user relation types to p::v base relation types. The value is a XML structure. It can contain multiple
<map> tags.

<rel ati ont ypemap>
<map from="user relation type" to="p::v base relation type"/>
</rel ati ont ypemap>

pure::variants Extensibility Guide

ps:diff:rebuilders

Property with IDs of IDiffRebuildTask to perform model dependen difference rebuilds. Rebuilders needs to reg-

ister at the
com.ps.consul.eclipse.ui.viewer .tree.diff.RebuildTask

extension point.

ps:admin:properties:disabled

Set to "true" to disable creation and update of admin properties on model elements.

3.2. pure::variants Client Transformation Modules

Autosar Feature Model Exchange Format (ARXML) Transformation

Export variantsto AUTOSAR Feature Model files.

Transformer Label

Autosar Feature Model Exchange Format (ARXML)
Transformation

Transformer Name

AUTOSAR FMEF Transformation

ID

com.ps.consul.eclipse.ui.autosar.fmef.transform.modul €

AUTOSAR Transformation Module

Creates variants of AUTOSAR projects.

Transformer Name

AUTOSAR Transformation Module

ID

rmation.module

com.ps.consul.eclipse.ui.transform.autosar.clienttransfo

CaliberRM Module

Triggers the export of a variant description model to CaliberRM.

Transformer Name

CaliberRM Module

ID

com.ps.consul.ui.caliber.transform.module

External Capella Transformation

Starts Capella and triggers transformation.

Transformer Name

External Capella Transformation

ID

com.ps.consul.eclipse.ui.transform.capella.module

Simulink Configuration Propagator

Propagate a variation point configuration to running Simulink instance.

Transformer Label

Simulink Configuration Propagator

Transformer Name

Simulink Configuration Propagation

pure::variants Extensibility Guide

’ID

com.ps.consul.eclipse.simulink.confi gurator.server.pro#agation

Simulink Configuration m-File Writer

Write avariation point configuration to a MATLAB/Simulink initialisation file (*.m).

Transformer Label Simulink Configuration m-File Writer

Transformer Name Simulink Configuration Saving

ID com.ps.consul.eclipse.simulink.configurator.server.saving
Creo Variation Module

Triggers the transformation of the example Java code.

Transformer Name Creo Variation Module

ID com.ps.consul.eclipse.ui.creo.transform.module

IBM Rational DOORS Module

Triggers the export of avariant description model to DOORS.

Transformer Name IBM Rational DOORS Module

ID com.ps.consul.ui.doors.transform.module

IBM Rational DOORS Configuration Exporter
Triggers the export of a variant description model to DOORS.

Transformer Name IBM Rational DOORS Configuration Exporter

ID com.ps.consul.ui.doors.transform.variant.column.module
IBM Rational DOORS NG Module
Triggers the transformation of the Doors NG Module.

Transformer Name IBM Rational DOORS NG Module

ID com.ps.consul.ui.doorsng.transform.module

EMF Feature Mapping Module
Create Variants of Mapped Ecore Models during the pure::variants transformation.

Transformer Name EMF Feature Mapping Module

ID com.ps.consul.eclipse.ui.mapping.ecore.clienttransformation.modul e

HTML Transformation Module

Creates HTML output of Models. Models can be input or transformed models of aVDM.

Transformer Name

HTML Transformation Module

ID

com.ps.consul.eclipse.ui.pvexport.transform.module

pure::variants Extensibility Guide

Reuse Transformation

Reuse another transformation configuration as part of the current transformation.

Transformer Name

Reuse Transformation

ID

com.ps.consul.eclipse.ui.transform.sub.module

Ant Build Module

Runs an Ant build file as part of the transformation.

Transformer Name

Ant Build Module

ID

com.ps.consul.eclipse.ui.transform.sub.ant

External Program Runner

Run an external program.

Transformer Label External Program Runner
Transformer Name exec
ID com.ps.consul.eclipse.ui.transform.exec.module

Makefile Generator

Generate a M akefile compatible to gmake, nmake, or ccmake.

Transformer Label Makefile Generator
Transformer Name makefile
ID com.ps.consul.eclipse.ui.transform.makefile. module

Action List Generator

pure::variants standard transformation which generates

Transformer Label Action List Generator

Transformer Name standard transformation

ID com.ps.consul.eclipse.ui.transform.actionlist.generator.modul e
Action List Runner

Execute pure::variants standard transformation action

Transformer Label Action List Runner

Transformer Name actionlist

ID com.ps.consul.eclipse.ui.transform.actionlist.runner.mogdule

Java Script Transformation Module

Triggers the transformation of Javascript code.

‘Transformer Name

‘ Java Script Transformation Module

pure::variants Extensibility Guide

’ID

com.ps.consul.eclipse.ui.transform.javascript.modul

Element Cluster Report

Generates a selection cluster report of the transformed variantsin aCSV file.

Transformer Name

Element Cluster Report

ID

com.ps.consul.eclipse.ui.variant.actions.cluster.report.m

odule

HP Quality Center Test Set creation module

Triggers the transformation of HP QC Test Plans which creates Test Instances for

Transformer Name

HP Quality Center Test Set creation module

ID

com.ps.consul.eclipse.ui.hpqc.transform.modul e.testset

HP Quality Center Test Folder creation module

Triggers the transformation of HP QC Test Plans which creates Test Folders and

Transformer Name

HP Quality Center Test Folder creation module

ID

com.ps.consul.eclipse.ui.hpqc.transform.modul e.testfol

PTC Integrity Module

Triggers the transformation of a PTC Integrity document.

Transformer Name

PTC Integrity Module

ID

com.ps.consul.eclipse.ui.ptc.integrity.module

JAMA Connect Transformation Module

Triggers the transformation of the JAMA project.

Transformer Name

JAMA Connect Transformation Module

ID

com.ps.consul.eclipse.ui.jama.transform.module

MagicDraw Transformation Module

Triggers the transformation of Magic Draw Projects.

Transformer Label

MagicDraw Transformation Module

Transformer Name

Magic Draw Transformation Module

ID

com.ps.consul.eclipse.ui.transform.magicdraw.module

Microsoft Word Module

Triggers the transformation of Microsoft Word Documents.

Transformer Name

Microsoft Word Module

ID

com.ps.consul.ui.transform.office.module

pure::variants Extensibility Guide

Microsoft Excel Module

Triggers the transformation of Microsoft Excel Workbooks.

Transformer Name

Microsoft Excel Module

ID

com.ps.consul.ui.transform.office.excel.module

Polarion Configuration Exporter

Triggers the transformation of the Polarion Module.

Transformer Name

Polarion Configuration Exporter

ID

com.ps.consul.eclipse.ui.polarion.transform.module

Polarion Variants Module

Triggers the transformation of Polarion LiveDocs inside Polarion.

Transformer Name

Polarion Variants Module

ID

com.ps.consul.eclipse.ui.polarion.variants.clientModul

IBM Rational Rhapsody Module

Triggers the transformation of IBM Rational Rhapsody file and server projects.

Transformer Label IBM Rational Rhapsody Maodule
Transformer Name Rhapsody Module
ID com.ps.consul.ui.transform.rhapsody.module

IBM Rational Quality Manager Module

Triggers the transformation of the RQM Test Plans.

Transformer Name

IBM Rational Quality Manager Module

ID

com.ps.consul.eclipse.ui.rgm.transform.module

Software Configuration Management Wrapper

Runs the Software Configuration Management wrapper for ps.scmfile source elements.

Transformer Label Software Configuration Management Wrapper
Transformer Name scmwrapper
ID com.ps.consul.server.scmsync.module

Enterprise Architect Module

Triggers the transformation of a Sparx System Enterprise Architect Project.

Transformer Name

Enterprise Architect Module

ID

com.ps.consul.ui.transform.sparxsea.module

10

pure::variants Extensibility Guide

Microsoft TFS Module

Transformer Name Microsoft TFS Module

ID com.ps.consul.eclipse.ui.tfs.transform.module

VEL Configuration Writer

Write a VEL configuration to XML file.

Transformer Label VEL Configuration Writer
Transformer Name VEL Transformation Module
ID com.ps.consul.eclipse.ui.vel .transformation.module

Zuken Variation Module

Creates Zuken variation resource files with destinations.

Transformer Name Zuken Variation Module
ID com.ps.consul.eclipse.ui.zuken.transform.module
4. Tutorials

4.1. Overview

Most tutorials consist of two eclipse projects. One can be used to build an eclipse plugin which hasto beinstalled
in the Eclipse plugins folder (these projects have the suffix .plugin) and example pure::variants projects (these
projects have the suffix .pvproject). These projects can only be used when the respective Eclipse pluginisinstalled.

To ease the installation process, installed SDK provides two example packages installable from "New"->"Ex-
amples'->"Variant Management SDK". The Extensibility Example Plugins package contains all eclipse plugin
projects and installs them into the workspace when sel ected. The Extensibility Example Projects package contains
all example projects.

4.2. Developing a pure::variants Model Validation Check

Overview

The reader must have basic knowledge of pure::variants and the Java Plugin Development under Eclipse. For
moreinformation about the Eclipse Plugin concept see chapter Plattform Plug-in Developer GuideintheEclipse
Help.

Thistutorial explains how to develop a new check and corresponding quick fix for the pure::variants M odel Val-
idation Framework. Model Validation checks are applied in order to examine the correctness of a pure::variants
model. If acheck detects problemsin amodel, the provided quick fix can be used to solve this problem automat-
icaly.

A check isaJavaclassthat isregistered asModel Validation Framework extension in the Eclipse plugin containing
the check. The quick fix alsoisaJavaclass that does not need to be registered. In the following it is shown how to
setup anew Eclipse plugin, implement and register the check, and provide aquick fix for the check. The presented
example check examines all unique names of the elements of a feature model. The names must begin with the
string feature, otherwise a problem is announced.

Thetutorial isstructured asfollows. Chapter 2 describes how anew Eclipse plugin is created. Chapter 3 showsthe
implementation and registration of the check class. Chapter 4 shows how the new check is activated and applied to
amodel. Chapter 5 explains how the quick fix for the check isimplemented and connected to the check. Chapter

11

pure::variants Extensibility Guide

6 shows how the quick fix for the check is used. The last chapter provides information about how to install the
new plugin in an Eclipse installation.

Before reading thistutorial it isrecommended to read section M odel Check Framework (Tasks/Validation Mod-

elModel Check Framework) from the pure:: variants User's Guide.

The plugin described in this tutorial is part of the pure::variants SDK. It can be installed by choosing New ->
Example from the Eclipse File menu, and then Examples -> Variant Management SDK -> Extensibility Example
Plugins -> com.ps.pvesdk.examples.model validation.plugin.

Setting up the Plugin Project

Asfirst a new Eclipse plugin project has to be created. Right-click in the Eclipse Projects View and choose New
-> Project -> Plug-in Project from the context menu (see Figure 6, “New Plug-in Project Wizard”).

Figure 6. New Plug-in Project Wizard

=)
Select a wizard

Create a Plug-in Project

Wizards:
type filter text

~ [= Plug-in Development
I’qﬁ Feature Patch
I’-{fﬁ Feature Project
=% Fragment Project
a3 Plug-in from Existing JAR Archives
L Plug-in Project
5* Update Site Project

[= SVN

‘/?:' < Back Next > Finish

Cancel

The name of the new project shall be com.ps.pvesdk.examples.modelvalidation. Figure 7, “Plug-in Project Set-
tings’” shows further settings required for the plugin. Please note that the plugin hasto work with an eclipse version
and must not work with OSGI framework.

Figure 7. Plug-in Project Settings

& New Plug-in Project

Plug-in Project

Create a new plug-in project

s

Project name: | com.ps.pvesdk.examples.madelvalidation

Use default location
Di\workspaces\workspace38_tests\com.ps pvesdk.examples.modek

Project Settings
Create a Java project

Browse...

Sourcefolder: | src

Output folder: | bin

Target Platform
This plug-in is targeted to run with:

(®) Eclipse version: 3.50r greater v

(O an 05Gi framework: Equinox

Working sets
[]Add project to working sets

minimal

.
@ < Back Next > Finish

Select...

Cancel

12

pure::variants Extensibility Guide

After pressing Next the Plug-in Content page is opened. Please apply the settings as shown in Figure 8, “Plug-
in Content Settings’.

Figure 8. Plug-in Content Settings

& New Plug-in Project o X
Content p—. l .
Enter the data required to generate the plug-in.
Properties
ID: [com.ps.pvesdk.cxamples.modelvalidation |
Version: [100 |
Ngme: | Model Validation Example |
Vengdor: [pure-systems GmbH N

Execution Environment: | JavaSE-1.6 ~ | | Environments...

Qptions.
ﬁﬁanerata an activator, a Java class that controls the plug-in's life cycle
com.ps.pvesdk.examples.modelvalidation Activator
[4] This plug-in will make contributions to the Ul
[JEnable APl analysis

Rich Client Application
Would you like to create a rich client application? OYes @Ne

P
@ = Back Next > Cancel

After pressing the Finish button anew plugin project is created. The new project contains an empty src-directory
for the Java code and a plugin.xml file.

Next the dependencies should be added for the plug-in. For this double-click on the plugin.xml fileto openitin
the Plug-in Manifest Editor. Switch to the Dependencies page and press the Add button to add the plugin-ins
listed in Figure 9, “Dependencies’.

Figure 9. Dependencies

Dependencies

Required Plug-ins
Specify the list of plug-ins reguired For the operation of this plag-in:

%.%cnm.ps.cnnsul.eclipse.ui.checks
%;cum.ps.cunsul.eclipse.ui
El;com.ps.consul.eclipse.core
qii;].;or-;|.ecli|:|se.c-:-re.resources
:i;l.:urg.eclipse.swt
?;lsorg.eclipse.ui.ide et
?;].;Drg.eclipse.jface

Remove

o

Thisisal to setup the project. The next step is to write the check class.

Writing the Check Implementation
This chapter shows how to implement the Java class for the new Model Validation check.

First the new Java package com.ps.pvesdk.examples.modelvalidation.plugin has to be created in
the src-directory of the plug-in. Then create a new Java class within the package and name it
CheckElementUniqueNameExample.java. This class hasto be derived from class Check and has to implement
the | ElementCheck interface.

Each check classimplementsthe check () methodsfrom theinterfacesit implements (I ElementCheck inthiscase).
These methods are called by the Model Validation Framework for each model item to check (model elements

13

pure::variants Extensibility Guide

in this case), and implement the check functionality. The return value of a check() method is an object of type

I CheckResult. This object contains the problems found by this check (of type Check Problem).

In the presented example a problem is provided for all features with a unique name that does not start with the

string feature. The problem object contains:

1) The problem-class. The problem-class has to match the name of the check as given at the extension point of

the plugin.

2) The problem-type, here ELEMENTCHECK_TYPE. The type corresponds to the interfaces implemented by the

check.

3) The problem-code to identify the problem. This code has no special format but shall be unique.

4) The problem-severity, here ERROR_SEVERITY. A problem can also have the severtities warning and info.

Furthermore the problem object contains information about the model item that was checked, i.e. the element id

in this case, and atextual problem description.

Thisisthe implementation of the check() method of the example check.

/**

£k ok k% %k 3k ok Ok ¥ % %k ok ok

~

This method inplements the check. It is called by the nodel validation
framework for every elenent of the checked nodel. It gets the elenent to
check and an abort listener that is used to find out whether the user has
aborted the current nodel validation run. In this case the check al so
shoul d be aborted. This is only useful for |ong running checks.

The result of the check is an object of type CheckResult (or any other type
i npl ementing the | CheckResult interface). This result object contains the
probl ens that were found during the check, i.e. that the uni que nane of the
checked el ement does not start with 'feature'.

@ar am el emrent
The el ement to check.
@aram | i st ener
The abort |istener.
@eturn | CheckResult with a vector of problens if the check fails.

public | CheckResult check(|PVEl enent el enent, | CheckAbortListener |istener) {

/*
* Create an enpty CheckResult object. If no problemis added to the result
* object, then this is interpreted as success by the nodel validation
* framework, i.e. the elenment's unique nane starts with 'feature' as
* claimed by the check.
*/
CheckResult result = new CheckResul t();
/*
* Ensure that the element is valid and has a non-enpty uni que name. Famly
* nodel elenments do not need to have a unique nane. Since this check is
* also applicable for famly nodels, sinply ignore el enents that have no
* uni que nane.
*/
if (element !'= null && el enent.getNane().length() > 0) {
/*
* Get the unique name of the element. This is nane that is to be checked
* in the next step.
*/
String name = el enent. get Nane();
if (nane.startsWth("feature") == false) { //$NON-NLS-1$
/*
The uni que nanme of the el ement does not start with 'feature'. This
means that the check is failed. To |l et the user know that the check
failed and what exactly is wong, a problem description is created
represented by a CheckProbl em obj ect .

The first argument of the constructor of class CheckProblemis the
name of the check, followed by the check type (an el ement check),

E I

14

pure::variants Extensibility Guide

* followed by a uni que problem code for this problem followed by the
* severity of the problem
*/

CheckPr obl em probl em = new CheckProbl en{ el enent . get Mbdel Cont ai ner (), get Nanme(),
CheckConst ant s. ELEMENTCHECK_TYPE, " CheckEl enent Uni queNaneExanpl e",
CheckConst ant s. ERROR_SEVERI TY) ;

/*

* To let the nodel validation framework know on which el enent to pl ace
* the problem marker for this problem the unique ID of the checked

* element has to be set in the probl em description.

*/

probl em set El enent | D(el enent . get |1 X)) ;

/*

* This nmessage is shown to the user for instance as the |abel of a

* correspondi ng problem marker in the Problens View.

*/

pr obl em set Message(MessageFor nat . f or mat (Messages. CheckEl enent Uni queNaneExanpl e_3,

nane)) ;

resul t. addProbl en(probl en) ;

}
}
return result;

}

In the next step the new check must be registered as an Extension for the Model Validation Framework. For this
purpose open the file plugin.xml with the Plug-in M anifest Editor again and switch to the Extensions page. Click
the Add button to select com.ps.consul.eclipse.ui.checks.Checks extension. After press Finish button the new
check extension is added to the extensions list. The Check-Extension is shown in Figure 10, “ Check-Extension”.

Figure 10. Check-Extension

Extensions

All Extensions Extension Details

Set the properties of the selected extension,
1o

Edit. .. Marme:

Paint: €Com.ps.consul.eclipse.ui.checks, Checks)

= com.ps, consul.eclipse, ui.checks, CheckCategory
[EZREE com . ps, consul eclipse. Ui checks, Checks

o

Down

Since each check has a specific category (like whole model or single el ement check) the example check also needs
an extension for the category of the check. Select com.ps.consul.eclipse.ui.checks.CheckCategory extension
from the extensions list. The Check Category-Extension is shown in Figure 11, “CheckCategory-Extension”.

Figure 11. CheckCategory-Extension

Extensions
All Extensions Extension Details
&8 o s, consul. eclipse Ui, checks. CheckCakegary Sef the properties of the selected extension.
<= com.ps.consul.eclipse ui.checks. Checks o
Poi@s._consul.eclipse.ui.checks.CheckCategor
-

Now a new Category and a new Check can be added to the Extensions. Right-click on the check extension and
choose New -> ElementCheck from the context menu. In the description field add a description for the new check.
Fill in the other fields as shown in Figure 12, “New ElementCheck” . classis the path the check class, modeltypes
is used to specify for which model types the check is applicable, and category specifies the check category the
check belongsto.

15

pure::variants Extensibility Guide

Figure 12. New ElementCheck

Extensions

All Extensions

= com.ps.consul.eclipse.ui.checks. CheckCategory
(== com.ps.consul.eclipse.ui.checks, Checks

[|%] Check Element Unique Name Example (ElementCheck)

Right-click on the category extension and choose New -> Category from the context menu. Add a description and

Do

m
c| (=
= =

B G E

Extension Element Details
Set the properties of "ElementCheck”

class*;

name*:

modeltypes®: | psifm|

description:

category:

fill in the other fields as shown in Figure 13, “New Category”.

com.ps. presdk, examples. modelvalidation. plugin, CheckElemer | | Browse...

Check Element Unique Name Example

Cheek i the unique name of an element starts with the string Teabure'
Example Checks

Figure 13. New Category

Extensions

All Extensions

[El-#= rom.ps. consul.eclipse. ui.checks. CheckCategory

£x= com,ps,consul.edipse, ui.checks, Checks

Testing the new Check

For testing the new check CheckElementUniqueNameExamplethe plugin hasto beinstalled. Therefor two different
possibilitiesexist. Either the pluginisexported as Deployable Plugin and installed into pure::variants. Or an Eclipse
Runtimeis started using the Check Example plugin. This approach is described in the Eclipse help in chapter PDE
Guide->Getting Sarted->Basic Plug-in Tutorial->Running a plug-in. How to export and install the plugin as a
Deployable Plugin isdescribed in the PDE Guide-> Getting Sarted->Basic Plug-in Tutorial->Exporting a Plugin.

After the Runtime is started or the Deployable Plugin is installed open the Preferences by choosing Win-
dow-> Preferences from the Eclipse menu. Change to page VariantManagement -> Model Validation where the

Up

Dy

Extension Element Details
Sek the properties of "category”
name: Example Checks

parent:

description: IThis cakegory includes only checks For model elements. I

registered checks can be configured and activated (see Figure 14, “New Check Configuration”).

Figure 14. New Check Configuration

S Preferences

type filter text

Memory Analyzer
Model Validation
Myiyn
oXygen XML Author
Plug-in Development
Report Design
Run/Debug
SWTBot Preferences
Team
Terminal
Validation
 Variant Management
Connector Preferen:
Example Details Pag
Image Export
Known Servers
Metrics.
Model Handling
Mode! Validation
puresvariants Licens
Relation Indexer
SDK Preferences
Visualization

< >

~

v

Model Validation

Check Configurations Automatic Validation

Available Configurations

Al Model Checks
ZJJ All Element Checks

New
Edit
Delete

Copy.

Selected Configuration

v (= Bample Checks
#% Check Element Unique Name Example (Feature Model)

v

Restore Defaults Apply

Apply and Close Cancel

After closing the preferences open for instance afeature model. Then click on button Validate Model inthe Eclipse
toolbar. Figure 15, “Validated Model” shows a sample feature model where the check has found three problems.
Ontheleft side of the model editor markers are shown for each problem in the model, placed on the corresponding

elements. The whole list of problems also is shown in the Problems View.

16

pure::variants Extensibility Guide

Figure 15. Validated M odel

s |[=
L=l B

testafm 52
8 v 1 iF test
£ v ik a
o visible = 'attr’
f] P b
1 featureC

After the check is tested, the next step is to write a quick fix for the problems found by the check (if possible
and/or needed).

Writing the Quick Fix Implementation

After amode is validated and problems were found in the model, the user can apply automatic quick fixes for
these problemsif available. This chapter explains how a quick fix can be provided for problemsfound by a check,
and how the quick fix can be connected to the check class.

In the package com.ps.pvesdk.examplesmodelvalidation.plugin create a new Java class with name
CheckElementUniqueNameExampleQuickFix.java. This class hasto be derived from the class CheckQuick-
Fix. Each quick fix class has a getL abel()-Mathod, getl mage()-Mathod and a getDescr iption()-Method, where
the functionality of the check is explained. See the following code.

public cl ass CheckEl ement Uni queNanmeExanpl eQui ckFi x ext ends CheckQui ckFi x2 {
/**
* This is the |abel of the quick fix shown in the |list of avail able quick
* fixes for a problem
*/
private String mLabel = Constants. EMPTY_STRI NG

/**

* This method is called by Eclipse to get the label for a quick fix. This
* |abel is shown in the in list of available quick fixes for a probl em and
* shall briefly explain what the quick fix does.
*
* @eturn The | abel string.
*/
@verride
public String getLabel () {
return m Label ;

}
/**

* This nmethod is called by Eclipse to show the description of a quick fix.
* The description shall explain in detail what the quick fix does.
*
* @eturn The description string.
*/
@verride
public String getDescription() {
/*
* For sinple quick fixes it is not necessary to provide a detail ed
* description. If the label is self-explanatory it may al so be used as the
* description text.

*/
return m Label;
}
/**
* This method is called by Eclipse to get the inmage for a quick fix. A quick
* fix does not need to have an image. If it has not an inage, this nethod
* sinply can return null. The image is shown in the |list of avail able quick
* fixes right before the |abel of the quick fix.
*

17

pure::variants Extensibility Guide

* The image shall give the user a hint what kind of operation is perfornmed by
* the fix, e.g. changing, creating, or renoving sonething.
*

* @eturn The image of the quick fix.

*/
@verride
public | mage getlnmage() {
/*
* This quick fix does a change, i.e. it changes the uni que name of an
* element. Thus, a change image is chosen (I Checkl mages. CHANGE | MG .
*/

Conposel mageManager i m = Ui Pl ugi n. get Defaul t (). get| mageManager () ;
return i mgetl mage(l Checkl mages. CHANGE | MG ;
}

Theinitialize()-method initializes the quick fix by eval uating the given problem marker containing the description
of the problem to fix.

/**

* This method is called by the check to initialize the quick fix object. From

* the given problem marker the quick fix gets the informati on about the
* current nodel and the nodel el ement that was checked. Wth this information
* it can create a neaningful |abel and description for the quick fix.
*
* @ar am nar ker
* The probl em nmar ker .
* @ar am nodel
* The nodel .
*/
@verride
public void initialize(lMarker marker, |PVMdel nodel) {
/*

* Get the elenment that has the problemand that needs to be fixed. For this
* purpose the class Vari ant Mar ker Resol ver is used that provides various

* useful nethods to get information froma problemmarker. In this case

* get Rel at edEl enent is used to get the checked el enent.

*/
| PVEl enent el enent = Vari ant Mar ker Resol ver. get Rel at edEl enent (mar ker, nodel) ;
if (element !'= null) {
/*
* Using the el enent a neani ngful |abel for the quick fix can be created.
*/

m Label = MessageFor mat. f or mat (Messages. CheckEl enent Uni queNanmeExanpl eQui ckFi x_1,
new Object[] { elenent.getNane(), "feature" + elenent.getName() }); //SNON-NLS-1$

Each quick fix has arun()-method that is called when the quick fix is applied. It implements the quick fix func-
tionality, i.e. adding the string feature to the unique name of the element for which the given problem marker is
delivered. The following code shows how the quick fix isimplemented.

/**
* This method is called by Eclipse to performthe quick fix if the user has
* chosen it fromthe list of the available quick fixes for a problem The
* problemis described in the given probl em marker.
*
* This quick fix prepends 'feature' to the unique name of a nodel el enment.
* For this purpose it has to get the checked el enent, has to calculate the
* new uni que nane, and has to set the new unique nanme to the element. |f the
* quick fix succeeds it has to renove the problem marker to show the user
* that the problemis fixed.
*
* @aram nar ker
* The probl em nmarker .
* @ar am op
*

The { @i nk Model Operation}.
* @hrows CoreException
*/

18

pure::variants Extensibility Guide

@verride
public void run(l Marker marker, Moddel Operation op) throws CoreException {
/*
* Get the checked el enent to change its uni que nane. As expl ai ned above,
* first the nodel has to be opened and then the el enent can be got fromthe
* mar ker .
*/
| PVEl enent el enent = Vari ant Mar ker Resol ver. get Rel at edEl enent (mar ker, op. get Model ());

/*

* Cal cul ate the new uni que nane by prepending 'feature' to the original

* uni que nanme of the el ement.

*/

String newnane = "feature" + el enent.getName(); //$NON-NLS-1$

/*

* Changes on the el ement cannot be perforned directly. Instead the el enent
* has to be put into changi ng node.

*

El /en*ent changed = op. changeEl enent (el enent) ;

*

/* Now t he nanme can be set using the Mdel API.

*

ch{anged. set Name(newnane) ;

*

/* The changes are executed by calling the perforn() nethod of the
:/Nbdel Qperation. After that call, the nodel changes are comm tted.

op. perform();

For connecting the quick fix with the example check, two methods have to be added to the check class. The first
method, hasResolutions(), has to return true if there are quick fixes for problems reported by the check. The
second method, getResolutions(), returns the available quick fixes and is only called when hasResolutions() has
returned true.

*

This method is called by the nodel framework to find out if there are any
qui ck fixes available for the given problem marker. The marker contains all
the information about the problemto fix. This nmethod is only called for
mar kers describing problens that are created by this check.

I f hasResol utions returns true, the nodel validation will call
get Resol utions to get the quick fixes for the given problem These quick
fixes are shown to the user and invoked by the user.

@ar am nar ker
The probl em nmar ker .
@eturn True if there are any quick fixes avail abl e.

EE I R S R IR

*

*/

@verride

publ i ¢ bool ean hasResol utions(| Marker marker) {
// There is a quick fix for this problem (see bel ow).
return true;

}

/**
* This method is called by the nodel validation framework if hasResol utions
* returned true for the given marker. It is used to return the quick fixes
* for the probl em described by the problem marker. This nethod is only called
* for markers describing problens that are created by this check.
*
* The quick fixes that are returned by this method are objects of classes
* inplementing the | CheckQui ckFi x interface. Each check can provide its own
* quick fix class that can be returned this way. There are no limtations on
* what a quick fix can do to fix the problem It may open dial ogs or
* automatically fix the problemw thout any user interaction.
*
* @ar am nar ker
* The probl em nmar ker .
* @eturn An array of | CheckQui ckFi x objects.
*

19

pure::variants Extensibility Guide

@verride
public | Marker Resol ution[] getResol utions(I| Marker marker) {
/*

* This vector is used to collected the quick fixes for the probl em created
* by this check. There are two quick fixes. The first prepends 'feature' to
* the uni que name of the checked el ement. The second is a so-called multi

* quick fix, that applies the first quick fix to all problenms with the sane
* uni que error code, i.e. to all problems with the error code

* " CheckEl ement Uni qgueNaneExanpl e" (see above). After a quick fix is chosen
* by the user the corresponding probl em nmarker is automatically renpved.

*/

Li st <I CheckQui ckFi x> resol uti ons = new Vect or <I CheckQui ckFi x>() ;

/
The quick fix for the problemcreated by this check is inplenented by
cl ass CheckEl enent Uni queNanmeExanpl eQui ckFi x i npl enenting the
* | CheckQui ckFix interface. It sinply prepends the mssing 'feature' to the
* uni que nanme of the el ement.
*/
CheckEl enment Uni queNanmeExanpl eQui ckFi x fi x = new CheckEl enent Uni queNanmeExanpl eQui ckFi x() ;
/*
* A quick fix object always is initialized using the marker fromwhich it
* gets all the informati on needed to fix the the problem
*/
fix.initialize(marker);
resol utions. add(fi x);

EE

If a model contains severa problems of the same type, then a MultiQuickFix can be added for fixing these
problems at once. For this a new MultiQuickFix()-object has to be created and added to the resolutions vector.

/*

* Class MultiQuickFix also inplenments the | CheckQui ckFix interface but does
* not have to be inplenented by the user.

*/

Mul ti Qui ckFi x multifix = new Mul ti Qui ckFi x(fix.getlD());

/*

* A quick fix also can have an inmage that is shown to the user in the |ist

* of the available quick fixes for a problem Since this quick fix changes

* the unique nane of an elenent, an image signaling a change is used, i.e.

* | Checkl mages. CHANGE_| Mc. Thi s i mage does not have to be set for the above
* quick fix because it sets this inage by its own.

*/

Conposel mageManager im = Ui Pl ugi n. get Def aul t (). get | mageManager () ;

mul tifix.setlmge(i mgetlmage(l Checkl mages. CHANGE | M3)) ;

/*

* This message is shown to the user in the |list of the avail abl e quick

* fixes, right after the above image. It is the textual description of what
* the quick does.

*/

mul tifix.setLabel (Messages. CheckEl ement Uni queNanmeExanpl e_4) ;

/*

* It is also initialized using the marker. Fromthe marker it gets the

* informati on which problems it has to fix using the uni que probl em code of
* the problem Thus the multi quick fix executes all the fixes returned by

* this method, except of this multi quick fix.

*/

mul tifix.initialize(marker);

resol utions. add(nmul tifix);

/*
* | CheckQui ckFi x i npl enents the | Marker Resol ution2 interface which expects
* an array of | MarkerResolution objects as the result of this nethod.
*/

return resol utions.toArray(new | Marker Resol uti on[resol utions.size()]);

Testing the new Quick Fix

This chapter shows how the problem reported by the example check can be fixed automatically using the provided
quick fix.

20

pure::variants Extensibility Guide

Install the plugin and change the preferences as described in chapter 4. Then open amodel and click on the Validate
Model button in the toolbar of Eclipse. If the check found elements in the model with unigue names not starting
with ‘feature', then markers are shown on the left side of the editor and in the Problems View.

If quick fixes are available for a problem, then ayellow lamp is shown at the corresponding problem marker. L eft-
clicking on such a marker opens a window with the list of available quick fixes for the problem (see Figure 16,
“Resolve Problem”). For the example check two quick fixes are shown. The first renames the corresponding
element by predending ‘feature’ to its unique name. The second is the multi quick fix that applies al the quick
fixes for problems found by the example check.

Figure 16. Resolve Problem

test.xfm &3
& v T test
& i,

i &8 Rename element 'a' to 'featurea’

r 23 Apply the same fix to all elements with the same problem

Deploying the new Check

To be ableto install the new plugin in an Eclipse installation, the plugin has to be exported as "Deployable Plu-
gin". How to export and install the plugin as a Deployable Plugin is described in the PDE Guide->Getting Sart-
ed->Basic Plug-in Tutorial->Exporting a Plugin.

4.3. Creating a pure::variants Model from a CSV File

Overview

This tutorial shows the use of the pure::variants Synchronization Framework for creating and synchronizing
pure::variants models from external data sources. Thetutorial exampleistheimport and update of feature models
from CSV! files.

The synchronization framework is used by several pure::variants extensions like the Connector for IBM Rational
Doors and the Connector for Source Code Management.

The presented implementation is an Eclipse plugin consisting of two parts, the import function and the update
function. The importer consists of awizard that is registered as a pure::variants Importer and appears on the
menu point Import->Variant Models or Projects->Smple CSV Import (Example). Thiswizard shows how aCSV
file can be mapped to a pure::variants model. The feature model produced by the import can be compared with
the original CSV file with the help of the update function. Changes in the CSV file can be visualized and merged
into the imported model.

Thetutorial isstructured asfollows. Chapter 2 describes how anew Eclipse pluginis created. Chapter 3 providesa
short introduction to the synchronization framework and explains how to map theinformation fromaCSV filetoa
pure::variants model. Chapter 4 shows how to create the pure::variants model from the mapped CSV information
and it shows the steps needed to provide the import wizard. Chapter 5 explainsthe implementation and registration
of acompare provider implementing the update function. Finally in chapter 6 it isshown how to use the new import
wizard toimport aCSV file. And it is shown how to use the model synchronization functionality of pure::variants
to compare and update the imported model with the CSV file.

The reader must have basic knowledge of pure::variants and the Java Plugin Development under Eclipse. For
moreinformation about the Eclipse Plugin concept see chapter Plattform Plug-in Developer GuideintheEclipse
Help.

ICSV - Character Separated Values

21

pure::variants Extensibility Guide

The plugin described in thistutorial is part of the pure::variants SDK. It can beinstalled by choosing New->Exam-
ple from the Eclipse File menu, and then Examples->Variant Management SDK->Extensibility Example Plugins-
>com.ps.pvesdk.examples.import.csv.plugin.

Setting up the Plugin Project

The first step to set up a new integration of an external data source, a CSV file in this case, is to create a new
Eclipse plugin. This plugin contai ns the Javaimplementation of theimporter and updater aswell astheregistration
entries for the import wizard and the compare provider.

Chooseitem File->New-> Project from the Eclipse menu and select "Plugin Project"” in thelist of available project
wizards, see Figure 17, “Plug-in Project”.

Figure 17. Plug-in Project

£ New Project O ke
Select a wizard

Create a Plug-in Project

Wizards:
type filter text

= JavaScript ~
= oXygen XML Author
v [= Plug-in Development
L Feature Patch
L Feature Project
% Fragment Project
¥ Plug-in from Existing JAR Archives
1 Plug-in Project
5% Update Site Project

= SWTBot

= Variant Management

= Examples v
@ < Back Next > Finish Cancel

The name of the new project shall be "com.ps.pvesdk.examples.import.csv.plugin”. All other settings should be
made according to Figure 18, “ Create new Plug-in Project”. Please note that the plugin hasto work with an eclipse
version and must not work with OSGI framework.

Figure 18. Create new Plug-in Project

S New Plug-in Project O X

Plug-in Project e S
Create a new plug-in project

Project name: (Dm.ps.pvesdk.examples‘\mpDrt.csv‘p\ugin| |

Use default location
s e e e = |00

Project Settings
Create a Java project

Source folder: | src |

Output folder: | bin |

Target Platform
This plug-in is targeted to run with:
@Ec\ipsavers\on: 3.5 or greater

(D an 0SGi framework: | Equinox

Working sets
[Add project to working sets New...
Select...
@ < Back Next > Finish Cancel

22

pure::variants Extensibility Guide

Click on button Next to switch to the "Plug-in Content” page. Apply the settings as shown in Figure 19, “Plug-
in Content”.

Figure 19. Plug-in Content

£ New Plug-in Project [u] X
Content — ,
Enter the data required to generate the plug-in.

Properties

ID: [com.ps.pvesdk.aamples.import.csv.plugin |
Version: [1.00.qualifier |
Name: [Simple CSV Import Example |
Vendor: [ps v]
Execution Environment: | JavaSE-1.8 ~ | | Environments...
Options

Generate an activator, 3 Java class that controls the plug-in's life cycle

Activator: | com.ps.pvesdk.examples.importplugin.csv.plugin.SimpleCSVimportPlugin

[This plug-in will make contributions to the Ul
[] Enable API analysis

Rich Client Application
Would you like to create a rich client application? OVes @ No

'/?3‘ < Back Mext > Cancel

The new plugin project is created after clicking on Finish. It contains a source directory for the Javaimplementa-
tion of the importer, the plugin description file pl ugi n. xni , and the file Si npl eCSVI npor t Pl ugi n. j ava defining
the plug-in'slife cycle class.

To be able to use the synchronization framework some additional plugin dependencies have to be specified. Open
filepl ugi n. xn with the Plug-in M anifest Editor by double-clicking onit. On the "Overview" page you can see
the fundamental information about the project. Switch to the "Dependencies’ page and click on the Add button
to add the plugins listed below (see Figure 20, “Plug-in Dependencies’).

Figure 20. Plug-in Dependencies

e} pv-pvesdk-manual.xml i+ com.ps.pvesdk.examples.import.csv.plugin 3 = 0
%= Dependencies O%E®

Required Plug-ins 12, Imported Packages

Specify the list of plug-ins required for the operation of this plug-in. Specify packages on which this plug-in depends without explicitly identifying their
originating plug-in.

%, .
== org.eclipse.core.resources Add...

% - .
== org.eclipse.core.runtime
% . .. Remove
== org.eclipse.ui.ide [

31-‘—com.ps.consul.eclipse.core

%Lécom.ps.consul.eclipse.sync

Down

31‘*com.ps.consul.eclipse.ui

31;com.ps.consul.eclipse.ui.p\rimpor‘t Properties

slécom.ps.consuI.ecIipse.ui.\riewer.tree.diff

The plugin is now ready for the next step, i.e. using the synchronization framework to import aCSV file.

Creating the model from the CSV file

Now the information about the model elements have to be imported from the CSV file. The CSV file must fulfill
some fundamental assumptions for this example. Each model element has a valid variation type (for example

23

pure::variants Extensibility Guide

ps:optional), aunique 1D, and aunique name (unique in the model). For each element the ID of the parent element
is needed to build the hierarchy of the model. Thus, the CSV file needs the following 4 columns. Unique ID,
Unique Name, Type, Parent Unique ID. All other columns are interpreted as element attributes in this example.
Following steps are necessary to construct a model from a CSV file:

1. Openthe CSV file and read the first line containing the column headers.
2. Read the other lines of the file containing the element definitions.
3. Create the elements using the information from the lines of the CSV file.

4. Create the model structure, i.e. the element hierarchy, using the parent element information.

Example 1. initFileContent() in ImportRunner.java

/1 Open the CSV file
Buf f er edReader reader = new Buf f er edReader (new Fi |l eReader (file));
// Read the first line
String tabl eHeader = reader.readLine();
/] Parse the first line and identify the col umms
String[] columms = m Parse. parse(tabl eHeader);
/!l Read all other lines
whi | e(reader.ready()){
/1 Read the next line
String |line = reader.readLine();

}

Creating an Element
With knowledge of the columnsin the CSV file, an El ement can be created for each line. First, the columns of

aline have to be identified. Then, if the values for Unique ID, Unique Name and Type are known, a new empty
element can be created and the values can be set.

Example 2. createElement() in ImportRunner .java

/] Create an enpty el enent

El enent newEl enent = Oper ati ons. nekeEl enent (Mbdel Const ant s. FEATURE_CLASS,
Model Const ant s. ATTRI BUTES_FEATURE_TYPE) ;

/1 Parse the current |ine

String[] values = m Parse. parse(line);

/1 Find the el enent properties

String ID get | D(val ues)

String type get Type(val ues)

String uni queNane = get Uni queNane(val ues)

/'l Set the unique elenent ID
newEl enent . setl D(new | (1 D));
/1 Set the el enent type
newEl enent . set Type(type);
/1 Set the unique nane of the el enent
newEl enent . set Name(uni queNane)

Additionally, the value for Parent Unique ID must be stored for later use. Later the unique I Ds of the parent and
the current element are used to create the element hierarchy. If no parent ID is given for an element, then this
element is taken as the root element of the model. There must be exactly one root element in a pure::variants
feature or family model.

Adding the attributes to an Element

All columns other than the columns described above are interpreted as element's attributes. The name of the
attribute is gathered from the column header. The values are defined in the lines. Only constant attributes are
supported by this example.

24

pure::variants Extensibility Guide

private void addProperties(CSVEntry entry, String[] colums, Elenment el ement) {
Li nkedHashSet <Stri ng> properti es = new Li nkedHashSet <Stri ng>(Arrays. asLi st (col ums));
/! Rermove all colums entries that are al ready added.
properties.removeAl | (Arrays. asLi st (get Requi redCol ums()));

for (lterator<String> iter = properties.iterator(); iter.hasNext();) {
String current Columm = iter.next();
String value = (String) entry.get(currentCol um) ;
if (currentCol um. equal s(ATTR_CLASS)) {
if (value.length() > 0) {
el enent . set Kl ass(val ue) ;

}
el se if (current Col um. equal s(ATTR_DESCRI PTI ON)) {
Qper ati ons. set Desc(el enent, val ue, null, el enment.getMdel Container().getM neType());

el se if (current Col um. equal s(ATTR_VI SI BLENAMVE)) {
[/l Attribute "Visible Nane" is used as visible nane
if (value.length() > 0) {
Qper ati ons. set VNane(el enent, val ue);
}
}
if (mNaneValidator.isValid(currentColum) == null) {
Qper ati ons. set PropertyVal ue(el ement, current Col um,
Mbdel Const ant s. ATTRI BUTES_STRI NG _TYPE, val ue);
}
}
}

Creating a pure::variant model

The pure::variants model is created using the Model Creator class.

/] Create a new nodel using
m_Model = Mbddel Creator. creat eModel (i d, name, type, rootid, rootnane);

Creating the model structure

After al elements are created, the hierarchy of the elements has to be created. The starting point for this process
istheroot element of the mode, i.e. the element that has no parent ID. The Model Operation has a method

‘ addEl enent (chil d, parent, rel Type)

With this method the child elements of an element are specified. Beginning with the root element all elementsare
added to the element hierarchy step-by-step.

Adding the Wizard

The last step for realizing the import is providing the import wizard. The import wizard is used to select the CSV
source file, the target model name and location, and to start the import process. Therefore a new wizard hasto be
added to the list of pure::variants import wizards.

Following steps have to be performed:

1. Add the extension point com.ps.consul.eclipse.ui.pvimport.VariantlmportWizards to extensions list of the plu-
gin

2. Createanew classnamed Si nmpl eCSVI npor t W zar d and register it asa"wizard" extension at thisextension point

3. Implement awizard page named Tar get Sel ect i onPage for the Si npl eCSVI nport W zar d

4. Implement the per f or nFi ni sh() method of the Si npl eCSVI npor t W zar d

To register awizard thefilepl ugi n. xm hasto be opened in the Plug-in Manifest Editor. The"Extensions' page
shows all extensions the plugin provides to the eclipse architecture.

25

pure::variants Extensibility Guide

Figure 21. Adding the Import Wizard extension

At com.ps.pvesdk.examples.import.csv.plugin &3 = 0
% Extensions OH%ET@
All Extensions 1% 58 B Extension Element Details
Define extensions for this plug-in in the fellowing section. Set the properties of 'wizard' Required fields are denoted by "™,
type filter text class™ | com.ps.consul.eclipse.sdk.examples.simpleCSVIimport.wizards.!| | Browse...
w o= com.ps.consul.eclipse.uipvimport.VariantimportWizards Add... name- | Simple C5V Import Wizard (Example) |
Simple CSV Import Wizard (Example) (wizard) o -
4= com.ps.consul.eclipse.uiviewer tree diff. CompareProviders Remove description: | Creates feature models from a csv file |
icon: | icons/csv_ohj.gif Browse...
Dow

Overview | Dependencies | Runtime | Bxtensions | Extension Points | Build | MAMIFEST.MF | pluginxml | build.properties

Theright sideof Figure 21, “ Adding the Import Wizard extension” showsthe attributes describing the new wizard.
Provide as name "Simple CSV Import Wizard (Example)" and as description " Creates feature models from a csv
file". The icon field is optional and does not need to be filled in. Once Eclipse is notified about the wizard the
wizard class has to be implemented. Click on the "class' field name and the "New Class" wizard appears.

Figure 22. Creating an Import Wizard

S New Javs Class u} X
Java Class e
Create new Java class. <
Sourcefolder | com.ps.pvesdk.examplesimport.csv.plugin/src || Browse.
Package: [com.ps.cansul eclipse.sdk.examples.simpleCsVimport.wizard| Browse...
[Enclosing type: Browse..
Name: [simplecsVimportWizard |

Modifiers: (@) public () package private protected

[Jabstract []final static
Superclass: [org.eclipse jface wizard wizard || rowse..
Interfaces: O com.ps.consul.cl \portWizard Add...
Remove

Which method stubs would you like to create?
[public static void main(String[] args)
[Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)

[Generate comments

The wizard class should be named Si npl eCSVI nport W zar d. The class has
to extend class org. eclipse.jface. wizard. Wzard and implement the interface
com ps. consul . ecl i pse. ui . pvinport. | Variant ! nportW zar d. Click on Finish to create the new class.

Once the wizard classis created, a wizard page has to be implemented that is displayed in the wizard. The page
should allow to select atarget file for the imported model in the file system. Also the page should provide afile
selection dialog that allows the user to select the CSV sourcefile. The wizard itself is finished by clicking on the
Finish button. If thebuttonisclicked thewizard'sper f or nFi ni sh() methodiscalled from by Eclipse environment.

Theper f or nFi ni sh() method collects the values entered in the target selection page. Then anew | npor t Runner
is created and initialized with the collected values. Finally the import processis started.

26

pure::variants Extensibility Guide

Example 3. performFinish() in SimpleCSVImportWizard.java

/**
* This nmethod is called when the Finish button of the wizard is pressed.
*/
@verride
publ i ¢ bool ean perfornfFini sh() {
| Resource file = null;
Fil e sourceFile = m Target Page. get Sour ceFil e();
| Path contai ner =
Resour cesPl ugi n. get Wr kspace() . get Root () . get Locat i on() . append(m Tar get Page. get Sel ecti on());
| Cont ai ner res =
Resour cesPl ugi n. get Wr kspace() . get Root () . get Cont ai ner For Locat i on(cont ai ner) ;

String fileName = m Target Page. get Fi | eNane() ;
/*
* |f file already exists, ask the user if the existing file shall be
* repl aced.
*/
i f (handl eExi sti ngResource(res, fileNane)) {
try {
| nport Runner csvinport = new | nportRunner(null, fileNane, sourceFile, res, new
CSVParser ());

| PVModel nodel = csvinport. i nport Mdel FronCSVFil e();
file = Utils.getResourceFile(res, fileNange);
/'l Inport to the server
if (file!=null & nodel != null) {
// Add nodel nature to enabl e synchronization

Nat ur eMbdel er . addNat ur e(nodel , NATURE_CSV_| MPORT_EXAMPLE) ;

/] created nodel is inported by the server

i f (Consul Project Eval uator. i sRenpt eProj ect (res.getProject()) == false) {
/*
* Created nodel is inported by the |local core server, if is |ocal
* project.
*/

m Model URL = URLUti | . decodeURL(fil e.getlLocation().toFile().toURl ().toURL());
Consul Cor ePl ugi n. get Def aul t () . get Model Manager () . i nport Model (nodel, m Model URL,

}

el se {
/1 if project is renpote project, nodel is inported to renote server
Renot eProject rp =
Consul Proj ect Eval uat or . get Renpt eProj ect| nfo(res. getProject()).getProject();
Renot eEntry parent =
rp. get Ent r yFor MappedResour ceRel ati veNane(res. get Proj ect Rel ati vePat h().to0SString());
rp.i nport Model (nodel, parent);
}
}

el se {
t hr ow Cor eManager . mekeCor eExcepti on(0, "The properties could not be detected");
}
}
catch (Exception e) {
| Status status = Utils.log(!lStatus. ERROR, Messages. Si npl eCSVI nport W zard_4, e);
ErrorDi al og. openError (new Shell (), Messages. Si npl eCSVI nport W zard_5,

Messages. Si npl eCSVI nport W zard_6, status);
return fal se;

nul l);

}
finally {
/*
* | ndependent on any exception, let refresh the created nodels
* cont ai ner.
*/
refreshProject(res);
}
}
return true;

}

27

pure::variants Extensibility Guide

Updating the imported model

After implementing theimport functionality it isnow explained how to providethe update functionality. Themodel
imported from the CSV file can be compared with the original CSV file. The changes between the model and the
CsV file are shown in the Compare Editor and can also be merged. For comparing two models it is substantial
that both models have the same model 1D. All model elements are compared on the basis of itsIDs. Two elements
areidentified as pair and can only be compared if both have the same ID. Otherwise an "Element Removed" and
an "Element Added" action indicates the change. The same appliesto element properties, relations, constants, etc.

Following steps have to be performed to add the compare functionality:
» Addtheextension point com.ps.consul .eclipse.ui.viewer .tree.diff. CompareProvider tothe plugin'sextension list
 Create anew class implementing the interface | Consul Model Conpar ePr ovi der 2

» Register the new class asa"provider" extension at the Compare Provider extension point

Register a Compare Provider

In pure:variants a Compare Provider has to be registered to compare a model. For this purpose open the file
pl ugi n. xni again. Then change to page "Extensions’.

Figure 23. Extensions - Compare Provider

[t com.ps.pvesdk.examples.import.csv.plugin &3 = 0
= Extensions OH2T®
All Extensions laz o= Extension Element Details
Define extensions for this plug-in in the following section, Set the properties of 'provider' Required fields are denoted by "',
type filter text class™ | com.ps.consul.eclipse.sdk.examples.simpleCSVimport.cor| | Browse...
v = com.ps.consul.eclipse.ui.pvimport.VariantimportWizards Add... natureid™ |com.p5.cDnsul.ecIipse.sdk.examples.wizards.CSVImportNature |
|£] Simple C5V Import Wizard (Example) (wizard) - —
w @= com.ps.consul.eclipse.uiviewer.tree.diff. CompareProviders Remove desc® | Model imported with Simple €5V Bxample |
% Moedel imported with Simple CSV Example (provider) name*: | Simple CSV Bample |
£ >

Overview Dependencies | Runtime | Extensions | Extension Peints| Build | MANIFEST.MF | plugin.xml | build.properties

Click on button Add to add a new extenson for the extenson point
com.ps.consul.eclipse.ui.viewer .tree.diff. CompareProviders. Select the extension point and choose New-
>provider from the context menu. On the right side of the "Extensions’ page the required settings must be
made. The attribute "class" specifies the path to the class implementing the | Consul Mbdel Conpar ePr ovi der 2.
For the attribute "natureid" insert the Nature ID as the one used for creating the imported models, i.e.
"com.ps.consul .eclipse.sdk.examples.wizards.CSVImportNature". The description and name arefreely selectable.

Implementing the CompareProvider

Each comparison between two models must implement the | Consul Model Conpar eProvi der2 interface.
For this add a new class to the plugin. This class implements the interface and has to extend class
com ps. consul . eclipse. ui.viewer.tree.diff.editor.Consul Mdel Conpar eProvi der. The models to com-
pare should be opened with the method i ni ti al i ze(i nput :I Edi t or I nput). Theleft model, i.e. the imported mod-
el, can be got with the following code

28

pure::variants Extensibility Guide

private File getFileForlnput(IEditorlnput input) {
File result = null;
if (input instanceof FileEditorlnput) {
result = ((FileEditorlnput) input).getFile().getLocation().toFile();
}

return result;

}

Then the file can be opened with the pure::variants model manager:

Consul Cor ePl ugi n. get Def aul t () . get Model Manager () openMbdel (URL url)

The model manager opens the model file and creates a corresponding | Pvvodel object. The right model must be
temporarly produced fromthe CSV file. For this purpose, the same steps can be performed asfor importing amodel
fromthe CSV file. Theonly differenceis, that it is not necessary to import the model to the local or remote server.

/]l Create a pure::varaint's node and add nature
| mpor t Runner csvModel = new | nport Runner(...);
| PVModel nodel = csvMbdel . i nport Model FronCSVFi | e() ;

The next two method calls pass the models to the compare editor:

set Left Model (1 eft);
set Ri ght Mbdel (right);

Finally the text identifying the models in the compare editor has to be defined. The initialize method must return
true to let the compare editor evaluate the models and show the changes.

Note that all models opened with the pure::variants model manager must also be closed with this model manager:

‘ | Model Manager . saf e. cl oseMddel (| PVMbdel nodel)

Using the CSV Example Plugin

Now it istimeto test the importer and update functionality. For testing the plugin two different possibilities exist.
Either the plugin is exported as Deployable Plugin and installed into pure::variants. Or an Eclipse Runtime is
started using the CSV Example plugin. This approach is described in the Eclipse help in chapter PDE Guide -
> Getting Started -> Basic Plug-in Tutorial -> Running a plug-in. How to export and install the plugin as a
Deployable Plugin is described in the PDE Guide -> Getting Sarted -> Basic Plug-in Tutorial -> Exporting a
Plugin.

Using the CSV Import

To demonstrate the use of the CSV importer, a new pure::variants project should be created. In the context menu
of the Variant Projects view choose New->Variant Project.

Figure 24. New pure::variants Project

£ New Variant Management Project [m] X
Variant Project
’ f2)
Create new variant project
Project name | csvExample |
Project contents
Use default
DAruntime-New_configuration',csvExample Browse
Project type
@Empty (O Standard
Description
Creates an empty project without any models.
@ < ac Nest > Conce

29

pure::variants Extensibility Guide

The models created from the CSV files can be imported into the new project. Select the new project in the Variant
Project View. Then choose Import->Variant Models or Projects->Smple CSV Import (Exampl€) from the context
menu. This opens the CSV Import wizard.

Figure25. CSV Import Wizard

& Variant Import [m] x
Select target and specify csv source file.

Enter or select the parent resource:

[esvBxample

1= csvBxample

Feature model name:

[test |

File name:

[test |

CSV source file: | WeatherStation.csv Choose..

In the upper part of Figure 25, “CSV Import Wizard” the target project or directory for the imported model hasto
be selected. Inthelower part, the model and the file names have to be specified. At last the CSV input file hasto be
selected using the button Choose. After clicking on Finish the per f or nFi ni sh() method of class Si npl eCsvi m

port W zar d is called and the import starts. This method executes the algorithm described in section 4. It uses the
I mpor t Runner to create a pure::variants model from the CSV file and savesit into the target project or directory.

Synchronizing an imported model

The pure::variants synchronization functionality is invoked by opening the imported model and clicking on the

Synchronize Model button =linthe Ecli psetool bar. Then choosethe original CSV file. The compare editor opens
showing the changes, if there are any.

30

pure::variants Extensibility Guide

Figure 26. Compare Editor - Comparing a Model with aCSV file

CSV_Tutonal.xfm E]E' Compare Editor (CSV_Tutorial - purezvaniants - CSV_Tutonial - TSV file) &2 = O

puresvariants Medel Structure Compare Filter: |

%) Element Changed: Display
%) Element Changed: Sensors
*F! Element Removed: TemperatureSensor

puresvariants Model Compare i ! o | CLA Ty
CSV_Tutorial - purenvariants CSV_Tutarial - CSY file
v 1 (F) WeatherMon v 1 (F) WeatherMon
? (F) DebuggingSupport ? (F) DebuggingSuppert
U (F) Output 1 F) Output
v 1 F Sensors v 1 F Sensors
¥ (F) AirPressureSensor ¥ (F) AirPressureSensor
& (F) WindSpeedSensor & (F) TemperatureSensor

¥ (F) WindSpeedSensor

5. Examples

5.1. Overview

Most examples consist of two eclipse projects. One can be used to build an eclipse plugin which hasto beinstalled
in the Eclipse plugins folder (these projects have the suffix .plugin) and sample pure::variants projects (these
projects have the suffix .pvproject). These projects can only be used when the respective Eclipse pluginisinstalled.

To ease the installation process, installed SDK provides two example packages installable from "New"->"Ex-
amples’->"Variant Management SDK". The Extensibility Example Plugins package contains all eclipse plugin

projects and instalIs them into the workspace when selected. The Extensibility Example Projects package contains
all example projects.

5.2. Metrices Plug-in Example

This example plugin is part of the pure::variants Extensibility Guide (PVESDK).

The name of the plugin is com.ps.pvesdk.examples.metrics

Purpose of the example

The plugin demonstrates how a new model metric can be implemented.

The exampl e collects some simpl e statistical information about amodel and preparesthe data structureto be shown
in the metrics view. It counts the number of elementsin a model and also counts for each used element type the

number of occurencesin the model.

The example registers the class com.ps.pvesdk.examples.metrics.Example as metrics provider for the
com.ps.consul.eclipse.metrics.ModelMetrics (in plugin.xml). The complete implementation isin Example.java

Using the example

Theplugin hasto be exported as " Deployable plug-in or fragment” and then installed inside the eclipseinstal lation.
Seethe Eclipse PDE Guide or the pure::variants Extensibility Guide for moreinformation on the export procedure.

31

pure::variants Extensibility Guide

An easy dternativeisto start a"Runtime Workbench”. To dothis, switch to the"Plug-in Development" perspective
("Window"->"Perspective'->"Other") and select "Run...". Here create a "Run-time workbench" configuration.
Make sure that "Clear workspace before launch" is deselected.

The plugin adds a new entry ("PVESDK Example...")to the Metrics list in "Window"->"Preferences'->"Variant
Management"->"Metrics'. Mark the checkbox and close the preference page. Open afeature or family model and
select "Show metrics' from the context menu. The dialog will show (among other) the example metric result.

Related Documentation

The Metrics API isdescribed in the pure::variants Extensibility Guide available in the Eclipse online help system.

5.3. Feature Element Details Editor Tab Plug-in Example
This example plugin is part of the pure::variants Extensibility Software Development Kit (PVESDK).

The name of the plugin is com.ps.pvesdk.examples.detail seditor.

Purpose of the example

The plugin demonstrates how a additional editor tab for feature or family model editors can be implemented. It
also shows how to connect to the Model Update service, to provide additional functionality on model changes.

The example's code is derived from the feature models details tab and can be used as starting point for custom
editors.

Using the example

Theplugin hasto be exported as " Deployable plug-in or fragment” and then installed inside the eclipseinstal lation.
Seethe Eclipse PDE Guide or the pure::variants Extensibility Guide for moreinformation on the export procedure.

An easy dternativeisto start a"Runtime Workbench". To dothis, switch to the"Plug-in Development" perspective
("Window"->"Perspective'->"Other") and select "Run...". Here create a "Run-time workbench" configuration.
Make sure that "Clear workspace before launch" is deselected.

The plugin provides anew tab in the feature model editor "Detail Exampl€e" and has also an own preference page
"Example Details Page" in the section "Variant Management".

Related Documentation

The used pure::variants Java APl and extension points are described in the pure::variants Extensibility Guide
available in the Eclipse online help system.

5.4. SimpleFeature Editor Plug-in Example

This example plugin is part of the pure::variants Extensibility Software Development Kit (PVESDK).
The name of the plugin is com.ps.pvesdk.examples.el ement.simpleeditor.

Purpose of the example

The example shows how to extend the pure::variants Eclipse editor's user interface with custom dialogs for user
specific model elements.

Plugin Structure

The plugin usesthe pure::variants extension point "com.ps.consul .eclipse.ui.ElementEditors" to register its ability
to act as editor and wizard for feature elements (elements of class "ps:feature”) of type "ps.simplefeature”. This
isdonein thefile "plugin.xml" (page Extensions).

32

pure::variants Extensibility Guide

The basic code for pure:variants Eclipse plugins is in class "SimpleFeatureEditor". It is respon-
sible for initialization and implements the necessary plugin interface for custom element dialogs
"com.ps.consul.eclipse.ui.dial ogs.| CustomElementEditor".

The code handling the Ul presentation and element creation/updating is divided into several classes. The class
"SimpleFeatureDialog” is the main class, the other classes are in the sub package panes.

5.5. Modeling EventHandler Plug-in Example
This example plugin is part of the pure::variants Extensibility Software Development Kit (PVESDK).

The name of the plugin is com.ps.pvesdk.examples.modeling.eventhandler.plugin.

Purpose of the example

The example shows how to implement a Model Updatel istener, which can be used to check updates to the model
before the are performed to the model. This can be used to avoid unintended changes to the model.

The example uses the ModeUpdateListener to check, if an element has a visible name. If the visible name is
missing the user isinformed and can decide to not apply the change to the model.

Additionally the user is asked to use the unique name as visible name for each newly created element, which does
not have avisible name defined yet.

Using the example

Theplugin hasto be exported as " Deployable plug-in or fragment” and then installed inside the eclipse installation.
Seethe Eclipse PDE Guide or the pure::variants Extensibility Guide for moreinformation on the export procedure.

An easy dternativeisto start a"Runtime Workbench". To dothis, switchto the"Plug-in Development" perspective
("Window"->"Perspective'->"Other") and select "Run...". Here create a "Run-time workbench" configuration.
Make sure that "Clear workspace before launch” is deselected.

Related Documentation

The used pure::variants Java APl and extension points are described in the pure::variants Extensibility Guide
available in the Eclipse online help system.

33

	pure::variants Extensibility Guide
	Table of Contents
	1. Introduction
	1.1. Extensibility Options
	1.2. Installation of the SDK Examples

	2. pure::variants Extension
	2.1. pure::variants plugin templates
	2.2. Use Custom Element Icons
	2.3. Deploy JavaScript File with pure::variants

	3. Reference
	3.1. Model Properties
	ps:evaluation:properties
	ps:evaluation:relation:mapping
	ps:diff:rebuilders
	ps:admin:properties:disabled

	3.2. pure::variants Client Transformation Modules
	Autosar Feature Model Exchange Format (ARXML) Transformation
	AUTOSAR Transformation Module
	CaliberRM Module
	External Capella Transformation
	Simulink Configuration Propagator
	Simulink Configuration m-File Writer
	Creo Variation Module
	IBM Rational DOORS Module
	IBM Rational DOORS Configuration Exporter
	IBM Rational DOORS NG Module
	EMF Feature Mapping Module
	HTML Transformation Module
	Reuse Transformation
	Ant Build Module
	External Program Runner
	Makefile Generator
	Action List Generator
	Action List Runner
	Java Script Transformation Module
	Element Cluster Report
	HP Quality Center Test Set creation module
	HP Quality Center Test Folder creation module
	PTC Integrity Module
	JAMA Connect Transformation Module
	MagicDraw Transformation Module
	Microsoft Word Module
	Microsoft Excel Module
	Polarion Configuration Exporter
	Polarion Variants Module
	IBM Rational Rhapsody Module
	IBM Rational Quality Manager Module
	Software Configuration Management Wrapper
	Enterprise Architect Module
	Microsoft TFS Module
	VEL Configuration Writer
	Zuken Variation Module

	4. Tutorials
	4.1. Overview
	4.2. Developing a pure::variants Model Validation Check
	Overview
	Setting up the Plugin Project
	Writing the Check Implementation
	Testing the new Check
	Writing the Quick Fix Implementation
	Testing the new Quick Fix
	Deploying the new Check

	4.3. Creating a pure::variants Model from a CSV File
	Overview
	Setting up the Plugin Project
	Creating the model from the CSV file
	Creating an Element
	Adding the attributes to an Element
	Creating a pure::variant model
	Creating the model structure

	Adding the Wizard
	Updating the imported model
	Register a Compare Provider
	Implementing the CompareProvider

	Using the CSV Example Plugin
	Using the CSV Import
	Synchronizing an imported model

	5. Examples
	5.1. Overview
	5.2. Metrices Plug-in Example
	Purpose of the example
	Using the example
	Related Documentation

	5.3. Feature Element Details Editor Tab Plug-in Example
	Purpose of the example
	Using the example
	Related Documentation

	5.4. SimpleFeature Editor Plug-in Example
	Purpose of the example
	Plugin Structure

	5.5. Modeling EventHandler Plug-in Example
	Purpose of the example
	Using the example
	Related Documentation

