
1

pure::variants Setup Guide
pure-systems GmbH

Version 6.0.5.369 for pure::variants 6.0

Copyright © 2003-2024 pure-systems GmbH

2024

Table of Contents
1. Introduction .. 2
2. System Requirements ... 3

2.1. pure::variants Desktop Client .. 3
3. pure::variants Desktop Client ... 4

3.1. Install pure::variants Desktop Client ... 4
3.1.1. Install with pure::variants Installer ... 4
3.1.2. Install into an existing Eclipse .. 9

3.2. Update pure::variants Desktop Client .. 13
3.2.1. Update with pure::variants Installer .. 13
3.2.2. Update with Update Action .. 16
3.2.3. Update with Eclipse package manager .. 17

3.3. Uninstall pure::variants Desktop Client ... 20
3.3.1. Uninstall using pure::variants Uninstaller .. 20
3.3.2. Uninstall pure::variants from existing Eclipse instance ... 21

3.4. Basic Setup of the pure::variants Desktop Client ... 24
3.4.1. Setup a pure::variants Desktop Client License .. 24
3.4.2. Update a pure::variants Desktop Client License .. 26
3.4.3. Add pure::variants Desktop Client License using environment variable or Java property
... 26

3.5. Trouble Shooting .. 26
3.5.1. pure::variants is low on memory .. 26

4. pure::variants Connectors .. 27
4.1. Installation of pure::variants Connectors .. 27
4.2. pure::variants Connector for Capella ... 27
4.3. pure::variants Connector for Team Foundation Server .. 27
4.4. pure::variants Connector for PTC Integrity ... 28

4.4.1. Add additional Fields for pure::variants .. 28
4.4.2. Change Connector and In-Tool Integration Settings ... 30
4.4.3. Change Fields Copied for Variant Creation .. 31
4.4.4. Enable PTC Integrity Client Access ... 32

4.5. Connector for IBM Rational Rhapsody ... 33
4.5.1. Preparing IBM Rational Team Concert ... 33
4.5.2. Preparing pure::variants ... 33

4.6. Connector for codebeamer .. 33
4.6.1. Installation of pure::variants Desktop Client ... 33
4.6.2. Installation of Server Component and pure::variants Widget to codebeamer 33
4.6.3. Installation without running in a docker container ... 34
4.6.4. Installation in a docker image ... 34
4.6.5. Pre-defined settings for Web Integration in Codebeamer .. 35
4.6.6. Permissions ... 35
4.6.7. Getting Version Information of the Server Component ... 35
4.6.8. Configuration To Enable Open ID Connect (OIDC) Authentication 35
4.6.9. docker-compose.yml for the NGINX Proxy ... 36
4.6.10. oidc-auth-proxy.dockerfile for the NGINX Proxy .. 37
4.6.11. oidc-auth-proxy-nginx.conf for the NGINX Proxy ... 37

pure::variants Setup Guide

2

4.6.12. Steps to Setup a Docker-container the NGINX Proxy ... 38
4.7. pure::variants Connector for Siemens Polarion .. 38

4.7.1. Installation of pure::variants Desktop Client ... 38
4.7.2. Installation of pure::variants server component for Polarion .. 39
4.7.3. Configuration of pure::variants server component for Polarion 39
4.7.4. Preparation of the Polarion project to store variability information 40

5. pure::variants Tool Integrations .. 41
5.1. Install pure::variants Tool Integrations .. 41

5.1.1. Install pure::variants Tool Integrations in silent mode .. 42
5.1.2. Update pure::variants Tool Integrations in silent mode ... 42
5.1.3. pure::variants Desktop Hub .. 42
5.1.4. pure::variants Integration for Doors .. 43
5.1.5. pure::variants Integration for PTC Integrity ... 43
5.1.6. pure::variants Integration for IBM Rational Rhapsody ... 44
5.1.7. pure::variants Integration for Enterprise Architect ... 44
5.1.8. pure::variants Integration for Microsoft Office ... 44
5.1.9. pure::variants Integration for Team Foundation Server ... 45
5.1.10. Advanced Integration Setup .. 45

5.2. Update pure::variants Tool Integrations ... 48
5.3. Uninstall pure::variants Tool Integrations .. 48
5.4. Basic Setup of pure::variants Tool Integrations ... 49

5.4.1. Server Connection Setup .. 50
6. pure::variants Web Integration ... 53

6.1. IBM Rational DOORS NG Web Integration ... 53
6.1.1. Requirements for pure::variants Integration Deployment .. 53
6.1.2. Installation on Apache Tomcat .. 54
6.1.3. Installation on WebSphere Liberty ... 55
6.1.4. Uninstall the pure::variants Integration for DOORS NG ... 56
6.1.5. Administrative Setup of the pure::variants Integration for DOORS NG 56
6.1.6. Add pure::variants Integration to DOORS NG .. 59
6.1.7. Check-up list for a successful deployment ... 60
6.1.8. Pre-defined settings for Web Integration in DOORS NG .. 60

6.2. Pre-defined settings for Web Integration .. 61

1. Introduction

This setup guide describes how to install and update pure::variants Evaluation on a personal computer.

The following sections provide detailed insights in each of the individual pure::variants Deployment components
from the perspective of administration and setup.

pure::variants Setup Guide

3

Figure 1. The Big Picture

pure::variants
Desktop Client

pure::variants
Desktop Hub

Desktop Client Machine
pure::variants Tool Integrations

IBM Doors

Custom

MS Excel IBM Rhapsody

MS Word

...

pure::variants Web Components

Doors NG

The manual is available in online help inside the installed product as well as in printable PDF format. Get the
PDF here.

2. System Requirements

pure::variants has different system requirements, depending on the part of the software going to be installed. The
following lists the system requirements for all parts of the software.

2.1. pure::variants Desktop Client

• Operating System

Only 64-bit operating running on x64 systems are supported:

• Windows 10, 11

• Windows Server 2016, 2019, 2022

• Linux with X11 Window System installed

• Mac OS

• For Macs with Apple Silicon Rosetta 2 needs to be installed.

• Software

• Oracle Java SE or OpenJDK

Supported Java versions:

pure::variants Setup Guide

4

• Java 8 - 17

• The Java compatibility is tested with the official Java Standard Edition provided by Oracle (https://
www.java.com/en/download/) and the OpenJDK provided by Oracle (https://jdk.java.net/archive/).

• Eclipse 4.6 – 4.31

• Memory

• Min: 4 GB

• Recommended: 8 GB

• CPU

• Min: Dual Core CPU

• Recommended: 4 CPU cores

• HDD

• Min: 10 GB free disk space

3. pure::variants Desktop Client
The pure::variants Desktop Client can be installed using the pure::variants installer as a stand-alone application or
it can be installed into an existing Eclipse based tool chain. For both ways to install pure::variants we recommend
to use the pure::variants installer.

The pure::variants installer is available for Windows only. If the operating system platform is Linux or MacOS
X, pure::variants needs to be installed into an existing Eclipse instance. See Section 3.1.2, “Install into an existing
Eclipse”.

In case of very strict firewalls or no network access on the installation machine either install pure::variants as
a stand-alone application. (Section 3.1.1, “Install with pure::variants Installer”) or install pure::variants into an
existing Eclipse instance using an update site. (the section called “Using update site”). These installation methods
allow you to first download the installation packages and install pure::variants afterwards.

The installation procedures are described below. Once the initial installation has finished, installation of a license
is required to use pure::variants. See following section for more information on license installation.

3.1. Install pure::variants Desktop Client

3.1.1. Install with pure::variants Installer

This installation method is available for Windows only. If you do not use Windows please see Section 3.1.2,
“Install into an existing Eclipse”.

To be able to successfully install the pure::variants Desktop Client you need to following:

• pure::variants Desktop Client license

• If a floating license is used additionally the license server URL is needed to be able to connect and obtain
a license form the license server.

• pure::variants Desktop Client installer or pure::variants update site

• supported 64-Bit Java version installed

The Windows Installer can be download from the pure::variants product web page. Go to https://www.pure-
systems.com/pvde-update. The product download pages are protected by a password. You need to login by using
the email address and the registration number from the license file.

https://www.java.com/en/download/
https://www.java.com/en/download/
https://jdk.java.net/archive/
https://www.pure-systems.com/pvde-update
https://www.pure-systems.com/pvde-update

pure::variants Setup Guide

5

Download the installer package ("pure::variants Windows Installer Package") and extract it. The installer will
set up a fresh Eclipse with pure::variants and documentation. Start the installation by double-clicking "Setup
Enterprise X.Y.ZZ.exe". Running the pure::variants enterprise installer requires Administrator privileges.

All pure::variants extensions available for the account are automatically included in the Windows Installer down-
load. However, some may not be enabled by default in Installer. Make sure to select the desired extensions during
the installation process. Later updates to the extension selection can be done either by reinstalling pure::variants
or by following the alternatives described in the section called “Using update site”.

Figure 2. pure::variants Desktop Client Installer

Click Next.

Figure 3. Setup pure::variants Desktop Client License

Read the license agreement and after accepting it click Next.

pure::variants Setup Guide

6

Figure 4. Setup pure::variants Desktop Client Installation Location

Select the folder where to install the pure::variants Desktop Client files. Click Next.

Figure 5. pure::variants Desktop Client Feature Selection

Select the connectors which shall be installed with the pure::variants Desktop Client. Click Next after the feature
selection is complete.

pure::variants Setup Guide

7

Figure 6. Setup pure::variants Desktop Client Start Menu

Enter the name for the Windows start menu entry, or disable the creation of the start menu entry. Click Next

The next pages may show information about pure::variants integrations, which are installed along with the
pure::variants Desktop Client. If no connector was selected providing an integration, this page will show the In-
stall button.

Click Install to start the installation process.

Figure 7. Setup pure::variants Desktop Client Finish Page

The Option Show further manual installation steps will open a text document showing more information about
the installed integrations and possible manual installation steps, which have to be performed for the integrations
to work properly.

pure::variants Enterprise Installer Command Line Options

The pure::variants installer provides the following command line options:

pure::variants Setup Guide

8

Table 1. pure::variants Installer Command Line Options

Option Description

/S Run the installation in silent mode. No installation dialog is opened.

Automatically installs the default selected software packages, or all if used together with op-
tion /ALL.

/UPDATE /S To update an existing installation in silent mode. Same as silent installation, no dialog is
opened.

start "" /WAIT
"Setup.exe" /UP-
DATE /S

To update an exsiting installation in silent mode. Same as silent installation, no dialog is
opened, but ensures installer not running in background.

/ALL Select all packages for installation.

/NODOTNET Skip installation of the .NET 4 Framework.

/NOINTCOMP Skip installation of the integration components for Java & .NET.

/JAVA Location of the Java executable to be used for the installation.

Example: /JAVA="C:\Program Files\Java\jre6\bin\java.exe"

/ECLIPSE Path to an existing Eclipse installation into which to install pure::variants as a feature, instead
of installing pure::variants as a stand-alone application.

This directory must contain the file eclipsec.exe.

Example: /ECLIPSE="C:\Program Files\Eclipse 3.8\eclipse"

/D Path to the directory where to install the pure::variants stand-alone application.

Must be the last option on the command line and must not contain any quotes, even if
the path contains spaces.

Example: /D=C:\Program Files\pure-variants

Example commandline with JAVA path:

"D:\5.x.x\pure-variants Setup 5.x.x\Setup Enterprise 5.x.x.exe" /JAVA="C:\Program Files\Java
\jre1.8.0_231\bin\java.exe"

Install pure::variants in silent mode

The pure::variants Desktop Client installer has a silent mode. This mode installs the pure::variants Desktop Client
without user interaction by just using the standard settings of the pure::variants Desktop Client installer also con-
sidering further options on the command line.

To do this, call the installer with command line option /S. See the section called “pure::variants Enterprise Installer
Command Line Options” for all available command line options.

Update pure::variants in silent mode

It is also possible to run the update in background or silent mode to update an existing installation. Note that there
will be no console output as well.

To do this, call the installer with command line option /UPDATE /S. To run it in silent mode but not in background
start "" /WAIT "Setup.exe" /UPDATE /S can be used. See the section called “pure::variants Enterprise Installer
Command Line Options” for all available command line options.

pure::variants Setup Guide

9

3.1.2. Install into an existing Eclipse

pure::variant can be installed into an existing Eclipse based tool chain. To install pure::variants, the pure::variants
installer package download from the pure::variants updatesite can be used. We recommend this for all Windows
users.

Alternatively the pure::variants update site can be used directly with the Eclipse client. You can also download
an archived update site from the pure::variants update site and use this with the Eclipse client (See the section
called “Using update site”).

Installation Requirements

pure::variants needs to following features to already be installed in the target Eclipse, or the Eclipse instance has
to have access to the Eclipse release update site.

• JavaScript Development Tools

• org.eclipse.wst.jsdt.feature.feature.group

• Eclipse Business Intelligence and Reporting Tools (BIRT)

• org.eclipse.birt.feature.group

• Graphical Modeling Framework

• org.eclipse.gmf.feature.group

Using pure::variants Installer

The installation into an existing Eclipse instance is done the same way as installing pure::variants as stand-alone
application (See Section 3.1.1, “Install with pure::variants Installer”).

There is one difference: the target Eclipse has to be defined with the /ECLIPSE command line option.

Using update site

• Start pure::variants (or the Eclipse into which pure::variants has been installed).

• Select "Help"->"Install New Software...".

• Select "pure::variants update site" from the available Software Sites.

If location "pure::variants update site" is not present, enter your location in the edit field, or press "Add" if you
have a local update site at hand.

The location of the site depends on the pure::variants product variant. Visit the pure-systems web site (https://
www.pure-systems.com) or read your registration email to find out which site is relevant for the version of the
software you are using.

https://www.pure-systems.com
https://www.pure-systems.com

pure::variants Setup Guide

10

Figure 8. Update Site Selection

• Unfold the pure::variants update site and select all features to be updated. Select "Next".

pure::variants Setup Guide

11

Figure 9. Pure::variants Plugin Selection

• Accept license, hit "Next" and then "Finish".

pure::variants Setup Guide

12

Figure 10. Licence Agreement

• In the dialog select "Install all".

• Restart pure::variants when asked for.

If the direct remote update is not possible (often due to firewall/proxies preventing Eclipse accessing external web
sites), please go to the web site using an Internet browser:

• For pure::variants Evaluation use https://www.pure-systems.com/pv-update

• For pure::variants Enterprise use https://www.pure-systems.com/pvde-update

and download the "Complete Updatesite" archive:

• Start pure::variants (or the Eclipse into which pure::variants has been installed).

• Select "Help"->"Software Updates"->"Find and Install...".

• Select "Search for new features to install" and "Next".

• Click on button "Archived Update Site" or "Local Update Site".

• Use "Browse" to select the downloaded archive file.

• Press "Ok". The pure::variants update site from the archive should be selected.

• All other check boxes should be unselected to speed up the process. Press "Finish".

pure::variants Setup Guide

13

• Unfold everything below pure::variants update site and select all features to be updated. Select "Next".

• Accept license, hit "Next" and then "Finish".

• In the dialog, select "Install all".

• Restart pure::variants when asked for.

3.2. Update pure::variants Desktop Client

3.2.1. Update with pure::variants Installer

This update method is available for Windows only. If you do not use Windows please see Section 3.2.2, “Update
with Update Action” or Section 3.2.3, “Update with Eclipse package manager”.

The Windows Installer can be downloaded from the pure::variants product web page. Go to https://www.pure-
systems.com/pvde-update. The product download pages are protected by a password. You need to login using the
email address and the registration number from the license file.

Download the installer package ("pure::variants Windows Installer Package") and extract it. The installer will
check for an existing pure::variants Desktop Client installation and start in update mode if it finds one. Start the
update by double-clicking "Setup Enterprise X.Y.ZZ.exe". Running the pure::variants enterprise installer requires
administrator privileges.

Figure 11. pure::variants Desktop Client Installer

Click Next.

https://www.pure-systems.com/pvde-update
https://www.pure-systems.com/pvde-update

pure::variants Setup Guide

14

Figure 12. Setup pure::variants Desktop Client License

Read the license agreement, and after accepting it click Next.

Figure 13. Choose Update Mode

Choose Update if the current pure::variants Desktop Client installation shall just be updated with the same installed
feature and settings. The installed pure::variants integrations will also be updated. The installed components cannot
be changed. If a change of the installed components is wanted, choose Install mode.

Or choose Install if the current pure::variants installation shall be removed and a new fresh pure::variants Desk-
top Client shall be installed. The Install option runs the installer as described in Section 3.1.1, “Install with
pure::variants Installer”. Please see this section for further installation steps.

Click Next.

pure::variants Setup Guide

15

Figure 14. pure::variants Start Update

Click Update to start the update process.

Figure 15. pure::variants Installation Progress

This page is showing the installation details. Click Next after this is finished.

pure::variants Setup Guide

16

Figure 16. Update pure::variants Desktop Client Finish Page

The Option Show further manual installation steps will open a text document showing more information about
the installed integrations and possible manual installation steps, which have to be performed for the integrations
to work properly.

3.2.2. Update with Update Action

pure::variants has a built-in update action which can be used to perform an update with all the currently installed
pure::variants extensions. This update action does not update the installed pure::variants integrations automatical-
ly. But they can be easily updated with the Tool Integration Update action. See Section 5.2, “Update pure::variants
Tool Integrations” for the detailed description.

The update action requires administrator privileges.

Note

The pure::variants Desktop Client restarts automatically after the update process finished. So please make
sure that all open editors are saved and closed before continuing.

Figure 17. Start pure::variants Desktop Client Update

pure::variants Setup Guide

17

Start the pure::variants Desktop Client update with the pure::variants Updates... action from the pure::variants
Help menu. The action can be found in the pure::variants sub-menu.

If the pure::variants Desktop Client is not started as Administrator, a dialog comes up to inform that pure::variants
has to be started as Administrator.

Figure 18. Start pure::variants Desktop Client Update

A dialog comes up and shows all available updates. Select the features to update an click Finish. The update
process starts and shows the progress in the same window.

Figure 19. Start pure::variants Desktop Client Update

After the update process finished, the pure::variants Desktop Client restarts automatically.

3.2.3. Update with Eclipse package manager

The quickest way to get a update for pure:.variants is to run the software updater inside pure::variants:

• Start pure::variants (or the Eclipse into which pure::variants has been installed).

• Select "Help"->"Install New Software...".

• Select "pure::variants update site" from the available Software Sites.

If location "pure::variants update site" is not present, enter your location in the edit field, or press "Add" if you
have a local update site at hand.

The location of the site depends on the pure::variants product variant. Visit the pure-systems web site (https://
www.pure-systems.com) or read your registration email to find out which site is relevant for the version of the
software you are using.

https://www.pure-systems.com
https://www.pure-systems.com

pure::variants Setup Guide

18

Figure 20. Update Site Selection

• Unfold the pure::variants update site and select all features to be updated. Select "Next".

Figure 21. pure::variants Plugin Selection

• Accept the license, hit "Next" and then "Finish".

pure::variants Setup Guide

19

Figure 22. Licence Agreement

• In the dialog select "Install all".

• Restart pure::variants when asked for.

If the online update is not possible (often due to firewall/proxies preventing Eclipse accessing external web sites),
please go to the web site using an Internet browser:

• For pure::variants Evaluation use https://www.pure-systems.com/pv-update

• For pure::variants Enterprise/Professional use https://www.pure-systems.com/pvde-update

and download the "Complete Updatesite" archive:

• Start pure::variants (or the Eclipse into which pure::variants has been installed).

• Select "Help"->"Software Updates"->"Find and Install...".

• Select "Search for new features to install" and "Next".

• Click on button "Archived Update Site" or "Local Update Site".

• Use "Browse" to select the downloaded archive file.

• Press "Ok". The pure::variants update site from the archive should be selected.

• All other check boxes should be unselected to speed up the process. Press "Finish".

• Unfold everything below pure::variants update site and select the features to be updated. Select "Next".

• Accept the license, hit "Next" and then "Finish".

• In the dialog select "Install all".

• Restart pure::variants when asked for.

pure::variants Setup Guide

20

3.3. Uninstall pure::variants Desktop Client

3.3.1. Uninstall using pure::variants Uninstaller

The uninstaller for the pure::variants Desktop Client can be started in two different ways. The first is to go to the
Windows Add or remove programs application and search for pure::variants Enterprise and start the uninstaller
by using the Uninstall action. The uninstaller requires Administrator privileges.

Figure 23. pure::variants Desktop Client Uninstaller

The second way is to navigate to the pure::variants Desktop Client installation folder and start the uninstaller by
double clicking it.

Figure 24. pure::variants Desktop Client Uninstaller

Click Next.

pure::variants Setup Guide

21

Figure 25. Uninstall from

Click Uninstall to start the uninstall process.

Figure 26. Completing Uninstall

Click Finish to close the uninstaller.

3.3.2. Uninstall pure::variants from existing Eclipse instance

There are two ways to remove pure::variants from an Eclipse instance. You can use the Eclipse command line or
remove the pure::variants features one by one in the running Eclipse Instance. Either way a cleanup of the Eclipse
instance has to be performed afterwards.

If the Eclipse instance is not needed anymore you can just remove the whole Eclipse installation from the file
system. If the Eclipse is of further use, follow one of the installation methods.

Uninstall pure::variants in running Eclipse Instance

To remove an installed feature from Eclipse using the Eclipse client, open the About Eclipse Platform dialog with
the About Eclipse Platform action in the Help menu.

pure::variants Setup Guide

22

Figure 27. Eclipse About Dialog

Use the Installation Details button to access the installation details.

Figure 28. Eclipse About Dialog

Use the Uninstall button to start the uninstallation of the selected features. Selecting multiple features at once is
possible.

pure::variants Setup Guide

23

Figure 29. Eclipse About Dialog

Click Finish to start the uninstall process. After it finished, Eclipse will prompt you to restart the application. Click
Restart to finish the uninstallation.

Uninstall pure::variants using Eclipse uninstall application

To use the uninstall application you need the feature ids of the features you want to uninstall. The feature ids
can be found in the About Eclipse Plattform dialog. Open the dialog with the About Eclipse Platform action in
the Help menu.

Figure 30. Eclipse About Dialog

Click on the pure::variants icon.

pure::variants Setup Guide

24

Figure 31. Installed pure::variants features

The feature ids are listed in the Feature Id column of the upcoming dialog. All feature ids have to be extended
by ".feature.group" and are concatenated with ",". The feature id list for the example shown in the previous figure
would be:

com.ps.consul.eclipse.purevariants.sparxsea.feature.group,com.ps.consul.eclipse.purevariants.
birt.feature.group,com.ps.consul.eclipse.purevariants.de.enterprise.feature.group,com.ps.
consul.eclipse.purevariants.doors.feature.group,com.ps.consul.eclipse.purevariants.sdk.
feature.group

The resulting list of feature ids is used in the following command.

"<Eclipse Installation Directory>\eclipsec.exe" -nosplash --launcher.suppressErrors -
application
org.eclipse.equinox.p2.director -uninstallIU "<list of feature ids>" -data "ws" -vmargs
-Dequinox.ds.block_timeout=120000
-Dorg.eclipse.ecf.provider.filetransfer.retrieve.readTimeout=120000
-Declipse.p2.mirrors=false -Xms100m -Xmx2048m -Xmnx64m -Xgcpolicy:gencon
-XX:MaxPermSize=512M -Xcompressedrefs

Cleanup Eclipse after uninstallation

pure::variants stores some settings, license and log files at two locations in the file system. On Windows the first
one is C:\Users\<user name>\AppData\Roaming\pure-variants-6, and the second C:\ProgramData\pure-variants-6.
On Linux based systems the pure-variants-6 folders are located in the users home directory and at /usr/share.
These folders should be removed after pure::variants has been completely removed from the computer.

To clean up the Eclipse instance, run the following command.

"<Eclipse Installation Directory>\eclipsec.exe" -nosplash --launcher.suppressErrors -
application
org.eclipse.equinox.p2.garbagecollector.application -data "ws" -vmargs
-Dequinox.ds.block_timeout=120000
-Dorg.eclipse.ecf.provider.filetransfer.retrieve.readTimeout=120000
-Declipse.p2.mirrors=false -Xms100m -Xmx2048m -Xmnx64m -Xgcpolicy:gencon
-XX:MaxPermSize=512M -Xcompressedrefs

3.4. Basic Setup of the pure::variants Desktop Client

3.4.1. Setup a pure::variants Desktop Client License

A valid license file is required in order to use pure::variants. If pure::variants is started and no license is present,
then the user is prompted to supply a license. Select the Yes button and use the file dialog to specify the license file
delivered with pure::variants. The specified license will be stored in the user's application data directory. If you
are using multiple workspaces then the license file has to be installed only once. The pure::variants integrations
also use the installed license and thus no further setup step is needed here.

pure::variants Setup Guide

25

To replace an existing pure::variants license, start pure::variants and open the Preferences (menu Window ->
Preferences). Navigate to Variant Management -> pure::variants License and use the Install License button
to select the new license.

Figure 32. pure::variants License Preferences

The pure::variants client license can also be defined using the PVLICENSE environment variable. This variable
has to define the fullpath to a license file. If this variable is defined the given license file is used and the user does
not need to define the license for pure::variants client instances.

The next step is necessary only if a floating license with a pure::variants license server is used. The license server
URL can be provided with the floating license file, or it has to be set by the user.

To set the license server URL, open the sub page Variant Management -> pure::variants License -> License
Server and enter the URL of the license server into the Floating License Server text field, click button Test
Connection to check that the connection is successful.

Figure 33. pure::variants License Server Preferences

pure::variants Setup Guide

26

Click button Reserve Offline License to choose how long the license shall be reserved.

Figure 34. Reserving Offline License

3.4.2. Update a pure::variants Desktop Client License

If pure::variants is not explicitly asking for a new license, the update can be forced by starting pure::variants and
opening menu Window -> Preferences. Select Variant Management -> pure::variants License and install the
license using the provided Install button.

Figure 35. pure::variants License Preferences

3.4.3. Add pure::variants Desktop Client License using environment vari-
able or Java property

For central or automatic deployed pure::variants Desktop Clients it may be necessary to also automatically deploy
or update the pure::variants Desktop Client license. For this use case the variable PVLICENSE can be used. This
variable can either be introduced as an environment variable or just added as a Java property to the command line
starting pure::variants. If this variable is set, the given license is used instead of a possibly previously installed
license.

Example for the command line parameter: -DPVLICENSE=C:/absolute/path/to/the/license/file.lic

3.5. Trouble Shooting

3.5.1. pure::variants is low on memory

If pure::variants is low on memory it can result in out of memory errors or causing pure::variants to run very slow
since Java is trying to free up memory constantly by running the garbage collector.

pure::variants Setup Guide

27

To solve that problem pure::variants needs to be enabled to use more memory. This can be done by editing the
eclipse.ini file, which is located in <pure::variants installation path>\eclipse\eclipse.ini.

Add the following three lines to the end of the ini file, if not existing yet. The first line tells Eclipse that there
are Java Virtual Machine options following. Xms defines the minimal amount of memory Java is reserving. Xmx
defines the maximum amount of memory Java is allowed to use. The default value is 1024 MB. We recommend
to set the value to 6144 MB .

-vmargs
-Xms40m
-Xmx6144m

Note

If Eclipse does not start after the eclipse.ini was changed, the maximum amount of memory defined is
not valid. There are multiple reasons for this, e.g. Java could not reserve enough memory. Try to decrease
the defined maximum memory.

4. pure::variants Connectors

4.1. Installation of pure::variants Connectors

Installing a connector into an existing pure::variants installation works the exact same way like installing the
pure::variants Desktop Client into an exsiting Eclipse instance. You just have to make sure the depemding
pure::variants connectors are already installed or they have to be installed together with the new connector. See
the section called “Using update site”.

4.2. pure::variants Connector for Capella

To install the pure::variants Connector for Capella, open Capella or Capella Studio and select Help->Install
New Software.... Enter the address of your pure::variants update site. From the list of available features, se-
lect "pure::variants - Connector for Capella", "pure::variants - Connector for EMF Feature Mapping" and the
pure::variants feature (e.g., "pure::variants - Enterprise").

For installation in Capella, the standard Eclipse update site needs to be set up. Otherwise the installation will fail
due to missing dependencies. In Capella 1.1.x the Eclipse update site is configured per default. In Capella 1.2.x,
the Eclipse Neon update site still needs to be added. To do that, open Window->Preferences->Install/Update-
>Available Software Sites and add the update site.

• For Capella 1.2.x use http://download.eclipse.org/releases/neon/

• For Capella 1.3.x use https://download.eclipse.org/releases/oxygen/

• For Capella 1.4.0 use https://download.eclipse.org/releases/2019-03/

• For Capella 5.x use https://download.eclipse.org/releases/2020-06/

• For Capella 6.0.0 use https://download.eclipse.org/releases/2021-06/

4.3. pure::variants Connector for Team Foundation Server

For using the pure::variants Integration for Microsoft TFS the server has to be prepared and the pure::variants
Integration has to be installed.

The work item types, which should be aware of variability information, must be configured with additional at-
tributes. These attributes can be pvRestriction, pvConstraint, pvDefaultSelected and pvName. At least, the attribute
pvRestriction should be created (as shown in Figure 36, “A XML configuration for pvRestriction field.”).

pure::variants Setup Guide

28

Figure 36. A XML configuration for pvRestriction field.

Administrator: For having support while defining restrictions on work items, the control type for the pvRestric-
tion attribute must be configured with "PVRestrictionEditorControl" (see Figure 37, “A XML configuration for
pvRestriction field's control type.”).

Figure 37. A XML configuration for pvRestriction field's control type.

4.4. pure::variants Connector for PTC Integrity

The pure::variants Connector for PTC Integrity as well as the pure::variants Integrity Integration expect a vari-
ant-related preparation of the solution item. For this several changes on the solution and settings are necessary,
which are described in the following.

4.4.1. Add additional Fields for pure::variants

The following fields have to be created for the solution item, e.g. MKS Solution. In the PTC Integrity Adminis-
tration open Workflows and Documents -> Fields. Add the fields by choosing Create Field... from the context
menu.

Table 2. Additional fields

Field Description

pvRestriction This field is needed to store the restriction rule on a requirement. Set longtext as the type
of the field, and ensure that the field is editable.

pvVariants This field is needed to store the names of variants a requirement is part of. Set longtext as
the type of the field. Ensure that the field is editable.

pvVariantId This field is needed to store the hexadecimal encoded ID of the pure::variants variant de-
scription model which was used to create a requirement document variant in PTC Integri-
ty. Set longtext as the type of the field. Ensure that the field is editable.

Figure 38. Added fields

pure::variants Setup Guide

29

Open Workflows and Documents -> Types in the PTC Integrity Administration and filter for all Requirement
types.

Figure 39. Solution Types

Add the new fields as Visible Fields to the following types.

Table 3. Types to add the fields for

Type Fields to add

Requirements Document pvRestriction, pvVariants, pvVariantId

Requirement pvRestriction, pvVariants

Shared Requirement pvRestriction

Figure 40. Fields added to type Requirement Document

pure::variants Setup Guide

30

4.4.2. Change Connector and In-Tool Integration Settings

pure::variants uses following settings in order to connect to PTC Integrity. This includes settings for the
pure::variants Connector for PTC Integrity, which allows importing and exporting documents, as well as the set-
tings for the In-tool Integration, which allows adding and changing restriction rules in PTC Integrity.

Table 4. Settings

Setting Default Value Description

Solution Item MKS Solution Used to get configuration properties

Document Type Field Type Used for the export of variant documents

Project Field Project Used for the export of variant documents

Document Fields Document Short Title Used to get several information from import-
ed requirement documents, and to copy fields
when exporting variant documents. The first
field must always be the document title field

Document Title Field Document Short Title Used to get the document title from imported
requirement documents, and to calculate the ti-
tle of exported variant documents

Restriction Rule Field pvRestriction Used to get restriction rules from imported re-
quirement documents, and to read and write re-
striction rules

Variant Enumeration Field pvVariants Used to store enumerated variant names in re-
quirement documents

Variant Document ID Field pvVariantId Used to store the ID of pure::variants variant de-
scription models in variant requirement docu-
ments

Requirement Text Field Text Used while import to get the text of require-
ments from requirement documents

Some of these settings can be directly changed before importing and exporting requirement documents. Others
can only be changed in the connector configuration file and in the solution type. The following table shows the
property names used to change these settings in the configuration file and the solution type.

Table 5. Properties

Setting Config File Property Solution Type Property

Solution Item solutionType

Document Type Field fieldname.documenttype PUREVARIANTS.TYPE.FIELD

Project Field fieldname.documentproject PUREVARIANTS.PROJECT.FIELD

Document Fields PUREVARIANTS.VARIANT.FIELDS

Document Title Field fieldname.documenttitle PUREVARIANTS.TITLE.FIELD

Restriction Rule Field attrname.restrictions PUREVARIANTS.RESTRICTION.FIELD

Variant Enumeration Field attrname.variants PUREVARIANTS.VARIANTS.FIELD

Variant Document ID Field fieldname.variantid PUREVARIANTS.VARIANTID.FIELD

Requirement Text Field fieldname.requirementtext PUREVARIANTS.TEXT.FIELD

To change these settings in the connector configuration file, create the file pvIntegrity.properties in directory
%APPDATA%\pure-variants-6. For each setting to change, add a line with the config file property of the setting
assigned to the new value. To change for instance the default field used for storing restriction rules to MyRestric-
tion and the default field used for storing the enumerated variants to MyEnumeratedVariants, you would add
the following two lines to the configuration file (the comments are optional):

pure::variants Setup Guide

31

Field used to store restriction rules
attrname.restrictions=MyRestriction
Field used to store enumerated variant names
attrname.variants=MyEnumeratedVariants

To change these settings on the solution item, open the Administration of PTC Integrity. Switch to Workflows
and Documents -> Types and select the solution type (e.g. MKS Solution).

Figure 41. Type MKS Solution

Right-click the solution type and choose Edit Type from the context menu. Then switch to Properties, click the
Create button and enter the solution type property name of the setting you want to change as name. Add the new
default value as value and click OK.

Figure 42. Added Properties

4.4.3. Change Fields Copied for Variant Creation

Several fields of the original document are copied while creating a document variant. This includes the fields
mentioned in section Section 4.4.1, “Add additional Fields for pure::variants” but also some fields that are copied
by default. The list of fields that are to be copied by default can be configured by the Integrity administrator.

To additionally copy for instance decompose relationships, the administrator has to open the Administration of
PTC Integrity. Then switch to Workflows and Documents -> Types and edit type Requirement. Open the Copy
Fields list and add the fields Decomposes To and Decomposed From. This way fields could be added for the
types Requirements Document, Requirement, and Shared Requirement.

pure::variants Setup Guide

32

Figure 43. Decompose Fields added

4.4.4. Enable PTC Integrity Client Access

The connector and the integration for PTC Integrity require access to the Integrity client in order to work. Start
the PTC Integrity client and open menu File -> Preferences. For the entries Integrity Client, Workflow and
Documents, Configuration Management, and Authorization Administration click the Connection section and
enable Prompt for Host Name and Port, prompt for User Name, and prompt for Password.

Figure 44. pure::variants Credentials

Note

These connection settings always are used even if you have the option "Prompt for Host Name and Port"
enabled and change the connection settings in the corresponding dialog when importing documents from
Integrity into pure::variants or exporting variants to Integrity.

pure::variants Setup Guide

33

4.5. Connector for IBM Rational Rhapsody

If you are working with Rhapsody Model Manager (RMM) projects, additional setup steps are needed.

First, you need to make sure that all required software is installed. That includes RMM (Architecture Management)
on the Jazz server and Rational Team Concert (RTC) on your client machine. Also in Rhapsody, the Rhapsody
Model Manager add-on needs to be installed.

4.5.1. Preparing IBM Rational Team Concert

In RTC two integrations need to be installed: The IBM Rational Rhapsody integration for Rational Team Concert
and the pure::variants Integration for RTC transformation. The IBM Rational Rhapsody integration for RTC is
needed for RTC to work with RMM projects. Please consult the RTC documentation for installation instructions.

The pure::variants Integration for RTC transformation is needed during transformation of RMM projects.
Without it, the transformation will fail. To install the pure::variants Integration for RTC transforma-
tion, please open RTC and use Help > Install New Software to install all contents of archived up-
date site com.ps.consul.eclipse.rtc.integration.feature_[version].zip. You can find the archived up-
date site zip in your Rhapsody integration installation folder (default is C:\Program Files\pure-sys\

tems\pv_Enterprise_6.0\com.ps.consul.eclipse.ui.rhapsody.integration).

4.5.2. Preparing pure::variants

For the transformation of RMM projects to work, you still need to set the RTC executable location. You can do this
in the pure::variants preferences at Window > Preferences > Variant Management > Connector Preferences >
Connector for IBM Rational Rhapsody. Alternatively, you can define an environment or Java system variable
that is named PV_RTC_EXEC_PATH and whose value points to the RTC executable location.

When using Rhapsody 9.0 or above, it is possible to run a transformation of RMM projects in offline mode. This
means that the transformatin is carried out without starting RTC/EWM client. At the above mentioned preference
page, you can select the checkbox to enable this feature. Alternatively, you can set an environment or Java system
variable that is named PV_RHAPSODY_RMM_OFFLINE_MODE to true to set the offline mode.

Additionally, you can set a custom location of RTC/EWM's eclipse.ini and lscm.bat files. You can set an environ-
ment or Java system variable that is named PV_RTC_INI_PATH to set the location of the eclipse.ini file and
PV_RTC_LSCM_BAT to set the location of the lscm.bat file. If this is not set, the trasformation will look for
it in the default location.

4.6. Connector for codebeamer

This chapter describes how to installation instructions specific to the codebeamer connector.

4.6.1. Installation of pure::variants Desktop Client

Follow the steps as described in ‘3.1. Install pure::variants Desktop Client’, in case installing pure::variants into
an eclipse client, see chapter ‘3.1.2. Install into an existing Eclipse’.

4.6.2. Installation of Server Component and pure::variants Widget to
codebeamer

Following components that are delivered as part of the pure::variants Enterprise installation package need to be
installed on the codebeamer server:

1. The pure::variants server component for codebeamer to be deployed on the codebeamer server.

The Jar files are packed in a zip file com.ps.consul.codebeamer.vel.jar-<version>.zip indicating the compat-
ible pure::variants version for identification.

pure::variants Setup Guide

34

2. The 'pure::variants Widget to codebeamer' that needs to be deployed on the codebeamer server is packed in a
zip archive com.ps.consul.codebeamer.pvwidget-<version>.zip.

The server component is a Spring based custom component running in the application context as defined for
codebeamer (for details see https://codebeamer.com/cb/wiki/18830).

Before deploying, unzip the jar files 'com.ps.consul.codebeamer.vel.jar' and 'pvcore.jar' from the zip archive of
the server component. Also make sure the server certificate that is used by the codebeamer server is trusted on
the pure::variants Desktop Client side.

Similarly, the folder 'pv_integration' contained in the zip for the to the pure::variants Widget needs to be unzipped.

4.6.3. Installation without running in a docker container

Follow the steps to install:

1. Stop the codebeamer server

2. Copy 'com.ps.consul.codebeamer.vel.jar' and 'pvcore.jar' found in the zip archive to <codebeamer>/tomcat/we-
bapps/cb/WEB-INF/lib

3. Copy following files included in 'pv_integration' to following locations:

'pv_integration/widget' to <codebeamer>/tomcat/webapps/pv-widget/, e.g. /home/appuser/codebeamer/tom-
cat/webapps/pv-widget/

4. Restart the codebeamer server

5. In codebeamer, add following the "externalWidgetExtensions" section to the Application Configuration
(https://<codebeamer>/sysadmin/configConfiguration.spr) as System Administrator:

 ...},
 "externalWidgetExtensions" : {
 "uri" : "https://<codebeamer>/pv-widget/extension.json"
 }
}

4.6.4. Installation in a docker image

When running codebeamer server in a docker container (https://codebeamer.com/cb/wiki/5562876), following
additional information needs to be defined in the docker compose configuration file:

volumes:
 -./com.ps.consul.codebeamer.vel.jar:<codebeamer>/tomcat/webapps/ROOT/WEB-INF/lib/
com.ps.consul.codebeamer.vel.jar
 -./pvcore.jar:<codebeamer>/tomcat/webapps/ROOT/WEB-INF/lib/pvcore.jar
e.g.
- ./libs/com.ps.consul.codebeamer.vel.jar:/home/appuser/codebeamer/tomcat/webapps/ROOT/WEB-
INF/lib/com.ps.consul.codebeamer.vel.jar
- ./libs/pvcore.jar:/home/appuser/codebeamer/tomcat/webapps/ROOT/WEB-INF/lib/pvcore.jar

To deploy the 'pure::variant Widget to codebeamer' following additional information needs to be added to the
docker compose configuration file:

volumes:
 - ./pv_integration/widget:<codebeamer>/tomcat/webapps/pv-widget/

e.g.
- ./pv_integration/widget:/home/appuser/codebeamer/tomcat/webapps/pv-widget/

Then follow the steps to install:

1. Shut down the docker container first

https://codebeamer.com/cb/wiki/18830
https://codebeamer.com/cb/wiki/5562876

pure::variants Setup Guide

35

2. Copy 'com.ps.consul.codebeamer.vel.jar' and 'pvcore.jar' found in the zip archive to a location accessible by
docker, and as defined in the volumes mapping (see above)

3. Copy the folder 'pv_integration' including all content to a location accessible by docker, and as defined in
the volumes mapping (see above). When updating, please make sure to remove old content of the complete
directory first.

4. Restart the docker container

5. In codebeamer, add following the "externalWidgetExtensions" section to the Application Configuration
(https://<codebeamer>/sysadmin/configConfiguration.spr) as System Administrator:

 ...},
 "externalWidgetExtensions" : {
 "uri" : "https://<codebeamer>/pv-widget/extension.json"
 }
}

4.6.5. Pre-defined settings for Web Integration in Codebeamer

The Web Integration for Codebeamer allows you to pre-define specific settings to ease up or limitate the setup
for end-user.

Please see chapter Section 6.2, “Pre-defined settings for Web Integration” for detailed explanations, which settings
are available and how they are configured.

To use these pre-defined settings for Codebeamer Web Integration, you need to write the configuration (in JSON
format) into a file called settings.json and put this into the deployment directory.

This settings.json must be placed into the existing deployment directory of the Integration.

E.g. <codebeamer>/tomcat/webapps/pv-widget/

|-index.html
|-extension.json
|-settings.json
|-... (other files)

4.6.6. Permissions

The communication between the pure::variants Desktop Client and codebeamer uses the codebeamer REST API.
In order to use the REST API end point, the user needs to have 'api_permission'.

To do this, make sure the user group that the users are assigned to in codebeamer have this permission set.

4.6.7. Getting Version Information of the Server Component

Use following REST call to query the version information of the server component, this way it can be checked
if the server component is running correctly:

https://<path_to_codebeamer>/rest/v3/ps/vel/version

Note: Use the credentials (basic authentication) of a codebeamer user with 'api_permission'.

4.6.8. Configuration To Enable Open ID Connect (OIDC) Authentication

OpenID Connect (OIDC) is an authentication protocol that is an extension of OAuth 2.0.

According to this, a dedicated system (Authorization server/ Identity provider) takes care of authenticating a user
and issuing access and id token if authentication was successful. This token can be used by clients to obtain data
from the Resource Server, in this case the codebeamer server. The REST API of codebeamer requires such access
token to enable this way of authentication.

https://<path_to_codebeamer>/rest/v3/ps/vel/version

pure::variants Setup Guide

36

To obtain the access token an Authentication Proxy needs to be deployed between the client and the server. All
REST API calls are redirected through it, while the authentication process including the refreshing of the tokens
is also managed by this proxy in the background.

Figure 45. Authorization process using a proxy

Client registration steps:

1. During the client registration process, both codebeamer and the Authentication Proxy needs to be registered.

2. The provided configuration files use the 'lua openresty' library for NGINX, implementing OIDC.

3. The registered client's Client ID and Client secret should be added in the configuration files of docker-compose
and NGINX (see later).

Following chapter describe the docker configuration files and their parameters.

4.6.9. docker-compose.yml for the NGINX Proxy

This file configures the auth-proxy service that is required by the pure::varaints client. The docker container image
named “oidc-auth-proxy” will be created and started, on which NGINX service will be available, which in-turn
will be used by pure::variants Desktop Client to make the REST calls.

Following parameters are to be set:

• build: Builds a docker image from a dockerfile. The path is a directory of the host system.

• ports: Specifies the port to which NGINX is listening to. 9943:9943 shows the mapping between host port and
container port (host port: docker container port).

Note: The port used in oidc-auth-proxy-nginx.conf should be used as docker container port.

• volumes: Contains the data which will be used by docker container. It is of the format source:target [:mode]
where, source are the host files and target are container path where volumes are mounted.

Any dependent container(s) that will be used by oidc-auth-proxy or any additional container that needs to be built
together can be deployed on the same docker machine by adding in the new container configuration under services.

Following code listing shows an example:

version: '3.1'
services:
 oidc-auth-proxy:
 build:

pure::variants Setup Guide

37

 context: .
 dockerfile: oidc-auth-proxy.dockerfile
 ##Specify the port to which nginx is listening to. (host port:docker port)
 ports:
 - 9943:9943
 volumes:
 - ./oidc-auth-proxy-nginx.conf:/usr/local/openresty/nginx/conf/nginx.conf:ro
 - ./server.crt:/usr/local/openresty/nginx/server.cert:ro
 - ./server.key:/usr/local/openresty/nginx/server.key:ro
 - ./cacerts.crt:/usr/local/openresty/nginx/cacerts.crt:ro
 restart: always

4.6.10. oidc-auth-proxy.dockerfile for the NGINX Proxy

This file contains the set of commands that has to be executed to build a docker image. lua-resty-openidc library
for NGINX is used to authenticate user against Open ID Connect provider. Hence this file contains the command
to load the base image of openresty from docker hub and then Install the required packages on the current docker
image, followed by command to start the NGINX.

Following code listing shows an example:

FROM openresty/openresty:alpine-fat
RUN apk add --update openssl-dev git && luarocks install lua-resty-openidc
CMD ["/usr/local/openresty/bin/openresty", "-g", "daemon off;"]

4.6.11. oidc-auth-proxy-nginx.conf for the NGINX Proxy

The directives that need to be adapted are as follows:

• Set listen port to which NGINX should listen to.

• The server name can be domain name or ip address of the host machine on which docker is running.

• The redirect_uri_path should match the uri pre-registered in Authorization server during client registration.

• OpenID Connect defines a discovery mechanism where OpenID Server publishes its metadata at a well known
url of the format: https://server.com/.well-known/openid-configuration

• The client_id and client_secret are obtained from the Authorization Server after the client registration.

• proxy_pass value can be a docker container on which codebeamer application is running, e.g. http://contain-
er-name:8090; or it can be a codebeamer application server url to which a request should be forwarded, e.g.
http or https://server-name:port(optional);

Following code listing shows an example:

events {
 worker_connections 128;
}

http {
 resolver 127.0.0.11 ipv6=off;
 lua_package_path '~/lua/?.lua;;';
 lua_ssl_trusted_certificate /usr/local/openresty/nginx/cacerts.crt;
 lua_ssl_verify_depth 5;
 lua_shared_dict discovery 5m;
 lua_shared_dict jwks 5m;

 server {
 listen 9943 ssl; ##mention the port to which nginx should listen to
 server_name codebeamer.example.com; ##domain name or ip address of the host on which
 docker is running
 ssl_certificate /usr/local/openresty/nginx/server.cert;
 ssl_certificate_key /usr/local/openresty/nginx/server.key;
 ssl_protocols TLSv1.2 TLSv1.3;

pure::variants Setup Guide

38

 location / {
 access_by_lua_block {
 local opts = {
 ##redirect_uri should match the uri pre-registered in Authorization server during client
 registration.
 redirect_uri_path = "/login/oauth/authenticate.spr",
 ##OpenID Connect defines a discovery mechanism where OpenID Server publishes its metadata at
 a well known url of the format: https://server.com/.well-known/openid-configuration
 discovery = "https://jas.example.com:9643/oidc/endpoint/jazzop/.well-known/openid-
configuration",
 ##Client_id and client_secret obtained from the authorization server after the client
 registration.
 client_id = "<set here the client ID>",
 client_secret = "<set here the client secret>",
 scope = "openid profile email",
 access_token_expires_leeway = 30,
 accept_none_alg = false,
 accept_unsupported_alg = false,
 renew_access_token_on_expiry = true,
 access_token_expires_in=3600,
 session_contents = {access_token=true, id_token=true}
 }
 if ngx.req.get_headers()["Authorization"] == nil or (not
 string.match(ngx.req.get_headers()["Authorization"], "Bearer")) then
 local res, err = require("resty.openidc").authenticate(opts)
 if err then
 ngx.status = 500
 ngx.say(err)
 ngx.exit(ngx.HTTP_INTERNAL_SERVER_ERROR)
 end
 ngx.req.set_header("Authorization", "Bearer " .. res.access_token)
 ngx.req.set_header("X-User", res.id_token.email)
 end
 }
 ##proxy_pass value can be a docker container on which codebeamer application is running.
 For ex., http://container-name:8090;
 ##or it can be a codebeamer application server url to which a request should be forwarded.
 For ex., http or https://server-name:port(optional);
 proxy_pass http://codebeamer-app:8090;
 }
 }
}

4.6.12. Steps to Setup a Docker-container the NGINX Proxy

Following are the steps to create a docker container image named “oidc-auth-proxy”. NGINX will available on
this docker container on the specified port.

1. Place the files provided (docker-compose.yml, oidc-auth-proxy.dockerfile, oidc-auth-proxy-nginx.conf) in a
folder.

2. Place certificates to be used within the same folder. This will be used by NGINX for SSL handshake.

3. Modify the NGINX configuration file oidc-auth-proxy-nginx.conf as explained in the previous section (oidc-
auth-proxy-nginx.conf).

4. Run docker-compose up to create/start a container.

4.7. pure::variants Connector for Siemens Polarion

This chapter describes how to setup the components in order to work properly together with Polarion

4.7.1. Installation of pure::variants Desktop Client

Follow the steps as described in ‘3.1. Install pure::variants Desktop Client’, in case installing pure::variants into
an eclipse client, see chapter ‘3.1.2. Install into an existing Eclipse’.

pure::variants Setup Guide

39

4.7.2. Installation of pure::variants server component for Polarion

The pure::variants enterprise ("pure::variants Windows Installer Package") contains the package
com.ps.consul.polarion.api-<version>.zip which needs to be deployed to the Polarion server. Therefore please
follow the following steps:

1. Unzip the archive com.ps.consul.polarion.api-<version>.zip which contains a folder

2. Place the extracted folder in the Polarion server at <polarion home> /polarion/extensions/pure-sys-
tems/eclipse/plugins/

3. Delete the cached Polarion configuration to ensure the pure::variants integration will be loaded properly on
startup by deleting the folder <polarion home> /data/workspace/.config.

Note

Please make sure that you only delete the .config folder

4. Restart the Polarion service

The previous steps are only for installing the integration. To configure the the pure::variants plugin please follow
the steps in Section 4.7.3, “Configuration of pure::variants server component for Polarion”

4.7.3. Configuration of pure::variants server component for Polarion

There are several steps necessary to prepare the Polarion server for pure::variants.

Configuration steps in Polarion

In order to show the in tool integration in the project's sidebar the pure::variants topic needs to be added in Polarion
which can be done in the Global Administration or in the Project Administration

1. Navigate to the Administration area -> Poartal -> Topics

2. Create a new topics configuration or add the pure::variants topic to an existing one

3. Add <topic id="purevariants" /> to the topic xml

an example topic definition is given here:

<?xml version="1.0" encoding="UTF-8"?>
<topics xmlns="http://polarion.com/schema/Portal/Topics" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xsi:schemaLocation="http://polarion.com/schema/Portal/Topics">
 <topic id="wiki"/>
 <topic id="workitems"/>
 <topic id="plans"/>
 <topic id="testruns"/>
 <topic id="collections"/>
 <topic id="purevariants"/>
 <topic id="baselines"/>
 <topic id="builds"/>
 <topic id="dashboard"/>
 <topic id="quality"/>
 <topic id="reports"/>
 <topic id="monitor"/>
 <topic id="repository_browser"/>
 <topic id="global_shortcuts"/>
 <topic id="project_shortcuts"/>
 <topic id="user_shortcuts"/>
</topics>

4. If all steps from Section 4.7.2, “Installation of pure::variants server component for Polarion” and the above
mentioned ones were successful the pure::variants menu should be visible on the sidebar of the project with
the configured topics.

pure::variants Setup Guide

40

Figure 46. Polarion menu on the project's sidebar including pure::variants.

Connection configuration of the pure::variants integration

The connection settings of the pure::variants in tool integration for Polarion can be preconfigured with proper
settings in order to ease the process of configuration for the user. Therefore a simple javascript file with the
name pv.settings.js is placed in the subfolder webapp of the Polarion server extension. The configuration and
possibilities of the javascript file are documented here: Section 6.2, “Pre-defined settings for Web Integration”.
The default configuration looks lik this:

 pvWidgetConnectionSettings = {
 // PV_HUB: Defines either 'webhub' or 'desktophub' as tool to connect with
 "PV_HUB": undefined,
 // PV_HUB_EDITABLE: true or false. Defines if the user is able to change the connection
 "PV_HUB_EDITABLE": true,
 // PV_HUB_URL: provide the url if webhub is defined at PV_HUB
 "PV_HUB_URL": undefined,
 // PV_HUB_URL_EDITABLE: true or false. Defines if the webhub url is modifieable
 "PV_HUB_URL_EDITABLE": true
 };

Note

Please make sure not to modify the variable name pvWidgetConnectionSettings during the modification
of the settings

4.7.4. Preparation of the Polarion project to store variability information

Adding general settings information to Polarion

For managing varaiblity information in Polarion assets pure::variants needs to know where restrictions are stored
and which characters are starting a calculation. These settings can be stored either globally, on project level or
even on document level. Therefore the settings priority follows this rule: document settings > project settings
> global settings

The settings are stored in the key pvSettings in json format e.g.:

 pvSettings={"beginMarker":"[","endMarker":"]","escapeMarker":"%",
"performPartialTextSubstitution":true,"pvRestrictionFieldName":"pvRestriction"}

pure::variants Setup Guide

41

• To store the settings globally navigate to the Global Administration and add the pvSettings property to the
Configuration Properties

• To store the settings for a specific project navigate to the Project Administration and add the pvSettings
property to the Configuration Properties

• To store the settings in a document of a project you need to add a custom field to the document. Therefore
please navigate to the Project Administration -> Document & Pages -> Document Custom Fields and add a
custom field to the document typs you want to support. The custom field's ID must be pvSettings and the type
of the custom field must be String (single line plain text)

Preparing restrictions for work items

In order to store the restriction of a work item. The work item needs to have a custom field with the type String
(single line plain text) the ID of the custom field must match the ID which is stored in the pvSettings object from
above. Our default ID for the custom field is pvRestriction.

To add a custom field to a work item type please navigate to the Project Settings -> Work Items -> Custom
Fields. There you need to select the work item type or all types and add a new field with the limitations mentioned.

Preparing the enumeration transformation

During the enumeration transformation of pure::variants the work items will be tagged with their respective variant
in which they are contained. To store that information another custom field is necessary. The ID of the custom
field must match the ID which is provided in the transformation configuration of the variant which is transformed
via pure::variants. Our default ID for the custom field is pvVariants. This custom field must be of type Rich
Text (multi-line).

The procedure to add a custom field to a work item is described in the section called “Preparing restrictions for
work items”

5. pure::variants Tool Integrations

5.1. Install pure::variants Tool Integrations

For using the pure::variants Integrations for several tools the integrations have to be installed. If pure::variants
is installed using the Installer, the tool integrations are installed along with the corresponding pure::variants con-
nector. If the installer was not used or the integration was not installed along with the corresponding connector
then follow the next steps. Usually a dialog comes up after pure::variants starts informing about not installed or
not up-to-date integrations.

If this dialog does not come up automatically it can be opened using the follwing menu entry in the pure::variants
Help menu. Go to Help->pure::variants the item Tool Integration Updates.

pure::variants Setup Guide

42

Figure 47. Install Tool Integrations

A dialog comes up listing all available Tool Integrations. Just select the integrations you want to install or update
and finish the dialog. pure::variants will guide you through the installation process. If an automatic update is
possible, pure::variants will just perform the update, without showing an installer.

The option Always check version of installed tool integrations during startup enables a check if all available
tool integrations are already installed and up to date. This check is performed each time pure::variants starts.

5.1.1. Install pure::variants Tool Integrations in silent mode

The pure::variants Tool Integration installers have a silent mode. This mode installs the pure::variants Tool
Integrations without user interaction. The different Tool Integration installers can be found in this path
<PV_INSTALL_DIR>\<ECLIPSE_DIR>\plugins.

To do this, call the installer with command line option /S. Note that the target directory must not contain any
quotation marks. Here's the generic example commandline for silent install of a Tool Integration:

<PV_INSTALL_DIR>\<ECLIPSE_DIR>\plugins\<integration_plugin_folder>\<tool_name>AddIn\setup.exe"
 /S /D=<PV_INSTALL_DIR>\com.ps.consul.eclipse.ui.<tool_name>.integration

For example, to silently install the Office Integration the following commandline can be performed:

"C:\Program Files\pure-systems\pv_Enterprise_5.0\eclipse\plugins
\com.ps.consul.eclipse.ui.ms.office.integration_5.x.x.xxx\msOfficeAddIn\setup.exe"
 /S /D=C:\Program Files\pure-systems
\pv_Enterprise_5.0\com.ps.consul.eclipse.ui.ms.office.integration

5.1.2. Update pure::variants Tool Integrations in silent mode

It is also possible to run the update in the background or silent mode to update an existing installation. Note that
there will be no console output as well.

To do this, call the installer with command line option /UPDATE /S. To run it in silent mode but not in background
start "" /WAIT "Setup.exe" /UPDATE /S can be used.

5.1.3. pure::variants Desktop Hub

If the pure::variants Desktop Client was installed with the installer the pure::variants Desktop Hub is already
installed along with the pure::variants Desktop Client. If the installer was not used or the pure::variants Desktop
Hub is missing for another reason the installation can be triggered from within the pure::variants Desktop Client.

pure::variants Setup Guide

43

Please see Section 5.1, “Install pure::variants Tool Integrations” for installing the pure::variants Integration
Base Components.

5.1.4. pure::variants Integration for Doors

Please see Section 5.1, “Install pure::variants Tool Integrations” for installing the integration executable.

After finishing the installation successfully, the Doors client has to be started with a command line option, which
enables the Integration menu within Doors.

The command line should look similar to this: doors -a "<Menu installation path>\pure-variants". Without
this command line option the Integration cannot be triggered and so not be used.

On Windows platforms it is also possible to add the directory to the registry key HKLM\Software\Telelogic\Doors
\Doors version\Addins.

1. Open the Registry editor

2. Browse to Doors installation in HKEY_LOCAL_MACHINE\SOFTWARE\Telelogic\DOORS\<DOORS ver-
sion number>\Config

3. Right click config Key to add a new string value

• Value Name set to Addins

• Value Data set to the path of the pure::variants menu directory

With administrative access to the Doors installation the Add-In can also be installed for all users of this installation
using the shared DXL library. See the Doors Help topic "Configuring Doors" for more information.

Note

This requires adaptions of the pure::variants Integration menu DXL scripts.

Now the Integration should be available in Doors. To verify if the installation was successfull, open a Doors
module and select from the menu pure::variants the item Open pure::variants Integration. If the pure::variants
Integration window opens, the Integration was installed correctly.

5.1.5. pure::variants Integration for PTC Integrity

Please see Section 5.1, “Install pure::variants Tool Integrations” for installing the integration executable.

For starting the integration within PTC Integrity some additional steps have to be performed. Start the PTC In-
tegrity client application. Open menu ViewSet -> Customize and switch to page Actions. Click on action group
Custom to view the custom user actions.

Figure 48. Custom Actions

pure::variants Setup Guide

44

Click the button Edit of a user action to customize it. Name the action Edit Restriction. As the program to execute
enter or browse to the path of file openPVUI.bat which is located in the installation path of the pure::variants
Integration for PTC Integrity. There is also an icon file pv.ico in this directory you can use.

Figure 49. Custom Button "Edit Restriction"

5.1.6. pure::variants Integration for IBM Rational Rhapsody

Please see Section 5.1, “Install pure::variants Tool Integrations” for installing the integration executable.

To use the Integration, it still needs to be added to your Rhapsody project:

1. Open a Rhapsody project

2. Select File > Add Profile to Model...

3. Select the file "pvRhapsody.sbs" from the Integration installation directory

Now the Integration should be available for the given project. You can open the Integration window at Tools >
pure::variants.

Per default the Integration is loaded when opening the Rhapsody project. If you want to only load the Integra-
tion when clicking Tools > pure::variants, you can edit file pvRhapsody.prp in the pure::variants Integration
for Rhapsody installation folder. Open the file with a text editor and set property showonstart to False. After
restarting Rhapsody, the Integration window should only open after clicking Tools > pure::variants.

5.1.7. pure::variants Integration for Enterprise Architect

Please see Section 5.1, “Install pure::variants Tool Integrations” for installing the integration executable.

Now the Integration should be available in Enterprise Architect. Select Extensions->Add-In Windows to open
the Add-In window, which shows the pure::variants Integration user interface. Furthermore, you can enable or
disable the Integration at Extensions -> Manage Add-Ins... (Since Enterprise Architect 14, you can find both
entries in tab Specialize).

5.1.8. pure::variants Integration for Microsoft Office

The Integration will not work if the following features are not installed with Microsoft Office:

• Microsoft Word / .NET Programmability Support (if using Microsoft Office Word Integration)

• Microsoft Excel / .NET Programmability Support (if using Microsoft Office Excel Integration)

• Office Tools / Actions .NET Programmability Support

They can be added to the Microsoft Office installation as follows:

1. Open the Windows Control Panel and navigate to Programs and Features

2. Right-click on your Microsoft Office Installation and select Change

3. Select Add or Remove Features

pure::variants Setup Guide

45

4. Add the features marked in Figure 50, “Adding Missing Features to the Office Installation” to your Office
Installation.

5. Press Continue and close the Dialog.

Figure 50. Adding Missing Features to the Office Installation

Now the installation of the pure::variants Integration for Microsoft Office should run successfully.

5.1.9. pure::variants Integration for Team Foundation Server

Administrator: At first, please download the pure::variants windows installer package from your pure::variants
update site and extract the pure::variants TFS integration zip archive with name com.ps.consul.web.ui.tfs2015-
x.x.x.zip. To install the integration navigate to the Control panel->Legacy Extensions and press Install. Thereby
browse to your local copy of pure::variants TFS Integration zip archive.

Figure 51. Install pure::variants TFS Integration

Please ensure that the pure::variants TFS Integration is enabled, after installation.

5.1.10. Advanced Integration Setup

If you are using a pure::variants model or license server, establishing a connection with that server may need extra
configuration. This may be the case, for example, if the server is located behind a proxy server or the communi-
cation with the server is encrypted and a self-signed certificate is used.

The steps needed to do in these cases differ, depending on which type of integration you are using. For java-based
integrations, such as the Integration for IBM Rational Rhapsody and the Integration for PTC Integrity, it is nec-
essary to specify proxy and certificate settings manually in pv.properties files. For .NET-based integrations (all

pure::variants Setup Guide

46

other integrations), the Windows proxy and certificate settings are used automatically, so no additional setup is
necessary.

Advanced Setup of Java-based Integrations

The following integrations are Java-based:

• pure::variants Integration for IBM Rational Rhapsody

• pure::variants Integration for PTC Integrity

All extra configurations in java-based integrations can be done by manually editing file pv.properties. You can
find it in two different locations:

• If you want to configure the settings for all users on the machine, please edit

%PROGRAMDATA%/pure-variants-6/pv.properties

• If you want to configure the settings only for the current user, please edit

%APPDATA%/pure-variants-6/pv.properties

Note that:

• In case the file does not exist, you need to create it and any necessary folders first.

• Before editing pv.properties, make sure that no pure::variants Integration is running (e.g. Integration for
Word, Excel, Doors, or the p::v Desktop Hub), otherwise your changes may be overwritten when closing the
integration.

• Path delimiters in any paths you enter must be forward slashes or escaped backward slashes (/ or \\). Otherwise
the path cannot be read.

• All property names are case-sensitive.

Proxy Settings

The following properties can be set to configure your proxy settings.

Table 6. Proxy Settings

Property Name Comments based on Java system property documentation

http.proxyHost The hostname, or address, of the proxy server

http.proxyPort The port number of the proxy server

https.proxyHost The hostname, or address, of the proxy server in case HTTPS is used

https.proxyPort The port number of the proxy server in case HTTPS is used

http.nonProxyHosts Indicates the hosts that should be accessed without going through the proxy. Typi-
cally this defines internal hosts. The value of this property is a list of hosts, separat-
ed by the '|' character. In addition the wildcard character '*' can be used for pattern
matching. For example http.nonProxyHosts=*.foo.com|localhost will indicate that
every hosts in the foo.com domain and the localhost should be accessed directly
even if a proxy server is specified.

The default value excludes all common variations of the loopback address.

java.net.useSystemProxies Set this to "true" to use Windows' global proxy settings (default: false), which are
set in the Internet Explorer or in the Windows system settings. If one of the above
properties is set, it overrides the respective Windows system property.

For example to use Windows' proxy settings, you would need to append this line to pv.properties:

pure::variants Setup Guide

47

java.net.useSystemProxies=true

Or to set all properties manually, you would need to append something like this:

http.proxyHost=YourHTTPProxyHost
http.proxyPort=80
https.proxyHost=YourHTTPSProxyHost
https.proxyPort=443
http.nonProxyHosts=*.foo.com|localhost

HTTPS Connection with License Server

The following HTTPS-related properties can be set. For more details, please refer to the respective Java system
property documentation.

Table 7. HTTPS Settings

Property Name Comments

javax.net.ssl.trustStore Path to your trust store

javax.net.ssl.trustStorePassword Password of your trust store

javax.net.ssl.trustStoreType Trust store type (e.g. JKS)

javax.net.ssl.keyStore Path to your key store

javax.net.ssl.keyStorePassword Password of your key store

javax.net.ssl.keyStoreType Key store type (e.g. JKS)

javax.net.debug Activation of debug mode (e.g. "all" to write all possible debug logs)

com.sun.net.ssl.checkRevocation Enable certificate revocation checking

For example when using a self-signed certificate that is stored in trust store D:/sandbox/servercert/cert-
trusted.jks you could append the following lines:

javax.net.ssl.trustStore=D\:/sandbox/servercert/cert-trusted.jks
javax.net.ssl.trustStorePassword=password

However, it is also possible to permanently accept a self-signed certificate when trying to first connect to your
model or license server. pure::variants or the integrations will open an certificate acceptance dialog on the first
connection attempt.

Advanced Setup of .NET-based Integrations

The following integrations are .NET-based:

• pure::variants Desktop Hub

• pure::variants Integration for Doors

• pure::variants Integration for Microsoft Excel and Microsoft Word

• pure::variants Integration for Enterprise Architect

• pure::variants Integration for Zuken CR-8000

Since pure::variants 4.0.19, the way the connection to pure::variants model or license servers is done has changed.
Therefore, no advanced setup as for java integrations is necessary anymore. The proxy and certificate settings
configured in Windows are used for the connection. So if the connection works in a browser that uses the Windows
certificate and proxy settings (e.g. Chrome or Edge), the connection should work in all .NET-based integrations,
too. The only exception from that rule are the supported security protocols:

Per default, the following security protocols are supported in .NET-based integrations: SSL3, TLS 1.0 - 1.3. To
instead let Windows decide which protocols to support, you need to add registry entry "SystemDefaultTlsVersions"

pure::variants Setup Guide

48

as documented here: https://docs.microsoft.com/en-us/mem/configmgr/core/plan-design/security/enable-tls-1-2-
client#configure-for-strong-cryptography.

If for some reason you want to switch back to the old server connection behavior as used in all java integrations,
you can do that as described in the following section.

Switching Back to Previous Server Connection Behaviour

There are two ways to switch back to the previous server connection behaviour. Either you add the
Windows environment variable PV_FORCE_JAVA_SOAP_SERVER_CONNECTION with value true, or you add line
forceJavaSoapConnection=true to file pv.properties (see the section called “Advanced Setup of Java-based
Integrations” for instructions how to edit pv.properties).

After switching back to the previous server connection behaviour, you may need to configure connection settings
(e.g., proxy settings) in the same way as for java integrations.

5.2. Update pure::variants Tool Integrations

To update an pure::variants tool integration the same mechanism as for installing a pure::variants tool integration
is used. Please consult section Section 5.1, “Install pure::variants Tool Integrations” for a detailed description.

5.3. Uninstall pure::variants Tool Integrations

The uninstaller for the pure::variants integration can be started in two different ways. The first one is to go to the
Windows Add or remove programs application and search for the pure::variants integration and start the uninstaller
by using the Uninstall action. The uninstaller requires Administrator privileges.

Figure 52. pure::variants Integration Uninstaller

The second possibility is to navigate to the pure::variants Desktop Client installation folder and start the uninstaller
by double clicking it.

Figure 53. pure::variants Integration Uninstaller

https://docs.microsoft.com/en-us/mem/configmgr/core/plan-design/security/enable-tls-1-2-client#configure-for-strong-cryptography
https://docs.microsoft.com/en-us/mem/configmgr/core/plan-design/security/enable-tls-1-2-client#configure-for-strong-cryptography

pure::variants Setup Guide

49

Click Next.

Figure 54. Uninstall from

Click Uninstall to start the uninstall process.

Figure 55. Completing Uninstall

The installation is succesfully finished. Click Finish to close the uninstaller.

5.4. Basic Setup of pure::variants Tool Integrations

When you first use the Desktop Hub after installation, it is necessary to check whether the license preferences are

correct. To this end, open the preferences dialog via the button in the Desktop Hub window or by selecting
Hub Configuration from the pure::variants tray menu.

A dialog opens that shows the path to your pure::variants installation and your license information (see Fig-
ure 56, “Preferences Dialog”). If any of the information is missing, you need to enter it. Use the ... button in the
pure::variants Installation group to enter the installation directory, and the Install License button to specify
your license.

pure::variants Setup Guide

50

If you are using a floating license and the URL in the Floating License Server group is not set already, you
need to enter the URL. To test if the connection to the floating license server is established, press the button Test
Connection.

Now you can use the Desktop Hub.

Figure 56. Preferences Dialog

5.4.1. Server Connection Setup

If you are using a pure::variants floating license, establishing a connection with the pure::variants license server
may need extra configuration. This may be the case, for example, if the license server is located behind a proxy
server or the communication with the server is encrypted and a self-signed certificate is used.

Since pure::variants 4.0.19, the way the connection to pure::variants model or license servers is done has changed.
Therefore, no advanced setup should be necessary anymore, since the settings configured in Windows are used
(e.g., proxy settings, certificates). However, it is still possible to switch back to the previous server connection
behavior.

Switching Back to Previous Server Connection Behaviour

This sections describe the switch back to the Java based Soap connection method. It is not recommended to use
this but may help to fix connection problems. This mechanism is available for .net based integrations only.

.net based integrations are

• Section 5.1.4, “pure::variants Integration for Doors”

• pure::variants Integration for Microsoft Office

• Section 5.1.7, “pure::variants Integration for Enterprise Architect”

pure::variants Setup Guide

51

• Section 5.1.9, “pure::variants Integration for Team Foundation Server”

There are two ways to switch back to the previous server connection behaviour. Either you add the
Windows environment variable PV_FORCE_JAVA_SOAP_SERVER_CONNECTION with value true, or you add line
forceJavaSoapConnection=true to file pv.properties (see below for instructions how to edit pv.properties).

Once you have switched back, you may again need extra configuration to connect to a license or model server.
See the section called “Advanced Integration Setup” for extra configuration setps.

Advanced Integration Setup

This steps are necessary only, if you have switched the Soap server connection method to the ols behavior. See
the section called “Switching Back to Previous Server Connection Behaviour”.

If you are using a pure::variants floating license, establishing a connection with the pure::variants license server
may need extra configuration. This may be the case, for example, if the license server is located behind a proxy
server or the communication with the server is encrypted and a self-signed certificate is used.

All extra configurations can be done by manually editing file pv.properties. You can find it in two different
locations:

• If you want to configure the settings for all users on the machine, please edit

%PROGRAMDATA%/pure-variants-6/pv.properties

• If you want to configure the settings only for the current user, please edit

%APPDATA%/pure-variants-6/pv.properties

When editing pv.properties, please note that:

• In case the file does not exist, you need to create it and any necessary folders first.

• Before editing pv.properties, make sure that no pure::variants Integration is running (e.g. Integration for
Word, Excel, Doors, or the p::v Desktop Hub), otherwise your changes may be overwritten when closing the
integration.

• Path delimiters in any paths you enter must be forward slashes or escaped backward slashes (/ or \\). Otherwise
the path cannot be read.

• All property names are case-sensitive.

Proxy Settings

The following properties can be set to configure your proxy settings.

Table 8. Proxy Settings

Property Name Comments based on Java system property documentation

http.proxyHost The hostname, or address, of the proxy server

http.proxyPort The port number of the proxy server

https.proxyHost The hostname, or address, of the proxy server in case HTTPS is used

https.proxyPort The port number of the proxy server in case HTTPS is used

http.nonProxyHosts Indicates the hosts that should be accessed without going through the proxy.
Typically this defines internal hosts. The value of this property is a list of
hosts, separated by the '|' character. In addition the wildcard character '*' can
be used for pattern matching. For example http.nonProxyHosts=*.foo.com|lo-

pure::variants Setup Guide

52

Property Name Comments based on Java system property documentation

calhost will indicate that every hosts in the foo.com domain and the localhost
should be accessed directly even if a proxy server is specified.

The default value excludes all common variations of the loopback address.

java.net.useSystemProxies Set this to "true" to use Windows' global proxy settings (default: false), which
are set in the Internet Explorer or in the Windows system settings. If one of the
above properties is set, it overrides the respective Windows system property.

For example to use Windows' proxy settings, you would need to append this line to pv.properties:

java.net.useSystemProxies=true

Or to set all properties manually, you would need to append something like this:

http.proxyHost=YourHTTPProxyHost
http.proxyPort=80
https.proxyHost=YourHTTPSProxyHost
https.proxyPort=443
http.nonProxyHosts=*.foo.com|localhost

HTTPS Connection with License Server

The following HTTPS-related properties can be set. For more details, please refer to the respective Java system
property documentation.

Table 9. HTTPS Settings

Property Name Comments

javax.net.ssl.trustStore Path to your trust store

javax.net.ssl.trustStorePassword Password of your trust store

javax.net.ssl.trustStoreType Trust store type (e.g. JKS)

javax.net.ssl.keyStore Path to your key store

javax.net.ssl.keyStorePassword Password of your key store

javax.net.ssl.keyStoreType Key store type (e.g. JKS)

javax.net.debug Activation of debug mode (e.g. "all" to write all possible debug
logs)

com.sun.net.ssl.checkRevocation Enable certificate revocation checking

For example when using a self-signed certificate that is stored in trust store D:/sandbox/servercert/cert-
trusted.jks you would need to append the following lines:

javax.net.ssl.trustStore=D\:/sandbox/servercert/cert-trusted.jks
javax.net.ssl.trustStorePassword=password

HTTPS Connection with Model Access Service (pure::variants Desktop Hub only)

Per default, the self-signed certificate that is used for securing the model access service connection is only gener-
ated for the current user. Thus, when there are multiple users working on the same machine, each user would use
a different self-signed certificate and each user would get a security exception the first time he uses the model
access service (e.g., when working with DoorsNG).

To prevent that, you as an administrator, can manually configure which certificate is used for all users and register
it in the Windows Trusted Root Certification Authorities store to make sure no security exception is shown. To
achieve that, you can set the following properties in

pure::variants Setup Guide

53

%PROGRAMDATA%/pure-variants-6/pv.properties

Table 10. Model Access Service Settings

Property Name Comments

enableHttpService true if the model access service should be enabled

httpServicePort Port that the model access service should run on

enableHTTPS true if the connection should be secured

keystore Path to your key store

keystorePassword Password of the given key store

For example, if you wanted to enable the model access service for all users, use a secure connection, and use your
own keystore that is located at C:/ProgramData/pure-variants-6/selfsigned.jks, you would need to append
the following lines to pv.properties:

enable the model access service
enableHttpService=true
secure the connection
enableHTTPS=true
the port on which the service listens
httpServicePort=9443
the path to your keystore, which must be a java keystore and which contains your certificate
keystore=C:/ProgramData/pure-variants-6/selfsigned.jks
the password to the keystore
keystorePassword=password

6. pure::variants Web Integration

6.1. IBM Rational DOORS NG Web Integration

The pure::variants Integration for DOORS NG is distributed in a WAR archive
(com.ps.consul.web.ui.doorsng-x.x.x.war) and can be found in the pure::variants Windows Installer pack-
age on the pure::variants update site.

Note

For brevity we have renamed the war-archive to pvwidget.war. At least for Apache Tomcat, the war-
archive name implies the context-path, so the pure::variants Integration's Catalog will be reachable at
https://[pv-server-FQDN]:[port]/pvwidget/catalog.xml.

Remember FQDN is the fully qualified domain name. The port number might be optional, if configured
with standard SSL port (443)

6.1.1. Requirements for pure::variants Integration Deployment

The deployment of pure::variants Integration for DOORS NG has the following requirements:

• Extenstion must be hosted on a web server application that can be configured to run with Oracle JDK/JRE or
OpenJDK.

• Extension must be accessible from a web server via HTTPS.

• The web server must not require any form of authentication to read the extension files.

• The certificate that is installed in the web server must be a valid certificate and must match the server's domain.

• Java Runtime Envritonment (JRE) or Java Development Kit (JDK) version 1.6 or later.

pure::variants Setup Guide

54

6.1.2. Installation on Apache Tomcat

Software Requirements

Apache Tomcat 8.5.x is recommended for deployment.

Installation of the pure::variants Integration for DOORS NG

The pure::variants Integration for DOORS NG must be deployed on your application server. This has to be done
once by the system administrator. It entails copying of pvwidget.war into the webapps directory, which is located
in the Apache Tomcat installation directory.

Note

In a Tomcat deployment, name of the war file becomes the context path of the web application. In order
to configure a nested context path for a web application, the name of the war should contain the indi-
vidual context path parts separated by '#'. For example, to make the pure::variants Integration's Catalog
accessible by a url like https://localhost:8443/pv/widget/dng/catalog.xml, the name of the war file needs
to be named as pv#widget#dng.war. And the war file should be placed into the webapps directory. For
further details please see the Official Tomcat documentation.

Configuration of Trust Store

As pure::variants Integration does client requests to DOORS NG application server, the Integration's client must
be configured with the trusted SSL-certificates. One way to do this is to create a keystore, add the DOORS NG
SSL-certificate to it and configure Tomcat's Java-Runtime with this keystore as a trust store.

In case of Windows, please create and open [TOMCAT_INSTALL_DIR]/bin/setenv.bat file to add the following
lines:

set "JAVA_OPTS=%JAVA_OPTS% -Djavax.net.ssl.trustAnchors=[TRUST_STORE_PATH]"
set "JAVA_OPTS=%JAVA_OPTS% -Djavax.net.ssl.trustStore=[TRUST_STORE_PATH]"
set "JAVA_OPTS=%JAVA_OPTS% -Djavax.net.ssl.trustStorePassword=[TRUST_STORE_PASSWORD]"

An example configuration could look like this:

set "JAVA_OPTS=%JAVA_OPTS% -Djavax.net.ssl.trustAnchors=c:\keystore.jks"
set "JAVA_OPTS=%JAVA_OPTS% -Djavax.net.ssl.trustStore=c:\keystore.jks"
set "JAVA_OPTS=%JAVA_OPTS% -Djavax.net.ssl.trustStorePassword=password"

In case of Linux, please create and open [TOMCAT_INSTALL_DIR]/bin/setenv.sh file to add the following lines:

export JAVA_OPTS=$JAVA_OPTS" -Djavax.net.ssl.trustAnchors=[TRUST_STORE_PATH]"
export JAVA_OPTS=$JAVA_OPTS" -Djavax.net.ssl.trustStore=[TRUST_STORE_PATH]"
export JAVA_OPTS=$JAVA_OPTS" -Djavax.net.ssl.trustStorePassword=[TRUST_STORE_PASSWORD]"

An example configuration could look like this:

export JAVA_OPTS=$JAVA_OPTS" -Djavax.net.ssl.trustAnchors=c:\keystore.jks"
export JAVA_OPTS=$JAVA_OPTS" -Djavax.net.ssl.trustStore=c:\keystore.jks"
export JAVA_OPTS=$JAVA_OPTS" -Djavax.net.ssl.trustStorePassword=password"

Update or reinstallation of pure::variants Integration for DOORS NG

Stop the Apache tomcat. Go to the Apache Tomcat installation directory, go in to work directory then go in to
Catalina directory and delete the localhost directory. Go back to Apache Tomcat installation directory, go in to
webapps directory and delete the previously installed pvwidget.war and pvwidget directory. Now copy the new
pvwidget.war in the webapps directory and start the Apache Tomcat again. No configuration change in Apache
Tomcat is required in case of an update.

https://tomcat.apache.org/tomcat-8.5-doc/config/context.html

pure::variants Setup Guide

55

6.1.3. Installation on WebSphere Liberty

Software Requirements

WebSphere Liberty Kernel v19.0.0.6+ is recommended for deployment.

Server Setup

Please follow the following steps for WebSphere Liberty setup:

1. Install the WebSphere Liberty according to the official documentation.

2. Create a server by running the following command:

bin\server create [SERVER_NAME]

3. Please add the following lines into the server.config.dir/server.xml file:

<featureManager>
 <feature>jsp-2.3</feature>
 <feature>ssl-1.0</feature>
</featureManager>

Please run the following command:

bin\installUtility install [SERVER_NAME]

SSL Configuration

Please ensure that the server is configured with SSL. Please refer to the Securing communications with Liberty
section of the official documentation.

Installation of the pure::variants Integration for DOORS NG

Copy the war archive file pvwidget.war to server.config.dir/apps. Add following line into the server.config.dir/
server.xml file:

<webApplication contextRoot="pvwidget" location="${server.config.dir}/apps/pvwidget.war"/>

Note

Nested context path can be configured by specifying the whole path in contextRoot attribute of the
webApplication. For example, to make the pure::variants Integration's Catalog accessible by a url like
https://localhost:8443/pv/widget/dng/catalog.xml, the contextRoot attribute should be configured as
contextRoot="pv/widget/dng".

The final server.config.dir/server.xml file should look similar to this:

<?xml version="1.0" encoding="UTF-8"?>
<server description="new server">
 <!-- Enable features -->
 <featureManager>
 <feature>jsp-2.3</feature>
 <feature>ssl-1.0</feature>
 </featureManager>

 <httpEndpoint host="*" httpPort="-1" httpsPort="9443" id="defaultHttpEndpoint"/>
 <ssl id="defaultSSLConfig" keyStoreRef="defaultKeyStore" sslProtocol="SSL"/>
 <keyStore id="defaultKeyStore" location="keystore.jks" password="{xor}LykrOiwr"
 type="JCEKS"/>

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_inst_top.html
https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/twlp_sec_comm.html

pure::variants Setup Guide

56

 <webApplication contextRoot="pvwidget" location="${server.config.dir}/apps/pvwidget.war"/>
</server>

Configuration of Trust Store

As pure::variants Integration does client requests to DOORS NG application server, the Integration's client must
be configured with the trusted SSL-certificates. One way to do this is to create a keystore, add the DOORS NG
SSL-certificate to it and configure Liberty's Java-Runtime with this keystore as a trust store. Please create and
open server.config.dir/jvm.options (see Directory locations and properties) to add the following lines:

-Djavax.net.ssl.trustAnchors=[TRUST_STORE_PATH]
-Djavax.net.ssl.trustStore=[TRUST_STORE_PATH]
-Djavax.net.ssl.trustStorePassword=[TRUST_STORE_PASSWORD]

An example configuration could look like this:

-Djavax.net.ssl.trustAnchors=c:\keystore.jks
-Djavax.net.ssl.trustStore=c:\keystore.jks
-Djavax.net.ssl.trustStorePassword=password

Update or reinstallation of the pure::variants Integration for DOORS NG

Stop your Web Application Server (like Tomcat or WebSphere Liberty. Replace the pvwidget.war in the
server.config.dir/apps directory. Start the web server again.

If you have used the pre-defined settings, as described in the section Section 6.1.8, “Pre-defined settings for Web
Integration in DOORS NG”, please re-add the settings.json file accordingly, as done before.

Once finished, please start your Web Application Server again.

6.1.4. Uninstall the pure::variants Integration for DOORS NG

Uninstall on Apache Tomcat

In order to uninstall pure::variants Integration for DOORS NG, stop the Apache Tomcat. Please go to Apache
Tomcat installation directory and then go to webapps directory. Delete the pvwidget.war file and the pvwidget
directory from the webapps folder.

Go back to Apache Tomcat installation directory, go in to work directory and then go in to Catalina directory
and delete the localhost directory from it. Start the Apache Tomcat.

Uninstall on WebSphere Liberty

In order to uninstall the pure::variants Integration for DOORS NG, please stop the WebSphere Liberty server.
Go to server.config.dir/apps folder and remove thepvwidget.war. Edit the server.config.dir/server.xml and
remove the following line from the file.

<webApplication contextRoot="pvwidget" location="${server.config.dir}/apps/pvwidget.war"/>

Save the file and start the WebSphere Liberty server again.

6.1.5. Administrative Setup of the pure::variants Integration for DOORS
NG

In order to visualize the variability, folloing settings need to be configured on the Jazz side.

JTS Advanced Settings

Browse to JTS home page. Click Manager Server and then click Advanced Properties in the left menu.

https://www.ibm.com/support/knowledgecenter/en/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/rwlp_dirs.html

pure::variants Setup Guide

57

Scroll down to OpenSocial gadget enable SSO and set its value to true as shown in figure Figure 57, “OpenSocial
gadget enable SSO Setting”.

Figure 57. OpenSocial gadget enable SSO Setting

For the versions ELM 7.0.2 iFix004, ELM 7.0.1 iFix009, CLM 6.0.6.1 iFix018, CLM 6.0.6 iFix022 and onwards,
an extra configuration is required. In External resources allowlist, please enter the URL of the widget. For exam-
ple if pure::variants Integration for DOORS NG is accessible at https://jazz.server.net:8443/pvwidget/catalog.xml
then enter https://jazz.server.net:8443/pvwidget/ in the allowlist as shown in the figure Figure 58, “External re-
sources allowlist”.

Figure 58. External resources allowlist

Further, scroll down to Jazz Authentication Services, in Jazz Authentication Proxy SSO Cookies field and
replace its value with LtpaToken, LtpaToken2, JSESSIONIDSSO, JSA_SESSION_IDENTITY. In the next field
in Jazz Authentication Proxy SSO Whitelist, write the URL of the server hosting the widget. Assuming that
pure::variants Integration DOORS NG war was renamed as pvwidget.war, the URL must end with /pvwidget/vel
as shown in the figure Figure 59, “Jazz Authentication Proxy SSO Settings”.

Figure 59. Jazz Authentication Proxy SSO Settings

pure::variants Setup Guide

58

Jazz RM Whitelist

As shown in Figure 60, “Adding A URL In RM Whitelist”, go to Jazz RM application administration page. Click
the Whitelist (Outbound) on the left menu. In the Enter Base URL field of the Add New Whitelist URL section,
enter the Base URL of the server where the pure::variants Integration for DOORS NG is installed. Click Add
button and the newly added URL should be added to the Outbound URL list on the same page.

Figure 60. Adding A URL In RM Whitelist

Note

On clicking the Add button, Jazz tries to access the URL being added. And if the URL is accessible only
then the URL is added to the list of Outbound URL.

User Extension Catalog URL

Browse to Jazz RM Advanced Settings page. RM Advanced Settings page can be accessed by pointing the web
browser to following URL:

 https://<server>:<port>/rm/admin#action=com.ibm.team.repository.admin.configureAdvanced

Scroll to User Extension Catalog URL as shown in figure Figure 61, “RM User Catalog Configuration”.

Figure 61. RM User Catalog Configuration

pure::variants Setup Guide

59

Considering that the context path of the pure::variants Integration is pvwidget, enter the Catalog URL as https://
<server>:<port>/pvwidget/catalog.xml and Save the settings.

Adding DOORS NG Integration in an already existing Catalog

Jazz RM allows configuration of only one Catalog URL. If you already have a Catalog URL configured in RM
Advanced Properties. Then the pure::variants Integration for DOORS NG can be added to the existing catalog
document. Lets consider that pure::variants Integration for DOORS NG is deployed on a web server and accessbile
via a URL like this:

https://server.local.com:8443/pvwidget/catalog.xml

Open the catalog xml document that is already configured in the RM Advanced Properties. Add the following
ju:catalog-entry in the list of existing ju:catalog-entry nodes.

<ju:catalog-entry>
 <dc:title>pure::variants Integration</dc:title>
 <dc:description>Enables adding variability information to requirements in a DOORS NG module.
 Enables editing of Restrictions and Calculations. Also provides the functionality of creating
 a Variability Preview.</dc:description>
 <ju:gadget rdf:resource="https://server.local.com:8443/pvwidget/pvscl.xml"/>
 <ju:icon rdf:resource="https://server.local.com:8443/pvwidget/pv.png"/>
 <ju:preview rdf:resource="https://server.local.com:8443/pvwidget/preview.png"/>
 <ju:thumbnail rdf:resource="https://server.local.com:8443/pvwidget/thumbnail.png"/>
 <ju:category>pure::variants</ju:category>
 <ju:category>Requirements</ju:category>
</ju:catalog-entry>

Note

Please note that the starting URL in the ju:gadeget, ju:icon, ju:preview and ju:thumbnail depends on the
deployement of the pure::variants Integration. Try to access the ju:gadget URL in browser and see if the
pvscl xml document is shown or not. If the xml document is shown in the browser then the pure::variants
widget should be available in the 'Add Widget' dialog.

6.1.6. Add pure::variants Integration to DOORS NG

In order to interact with the Integration, it needs to be added inside Jazz' Mini Dashboard. Hence, open the Mini
Dashboard on the left side panel inside DOORS NG. At the top left of Mini Dashboard, click the Add Widget
button. A dialog opens as shown in the figure Figure 62, “Adding Integration inside Mini Dashboard”.

Figure 62. Adding Integration inside Mini Dashboard

pure::variants Setup Guide

60

On the left side of the dialog, in the widget category, click pure::variants. Then under the pure::variants Integra-
tion click the Add Widget.

For further instructions see section Adding an OpenSocial gadget in the documentation of IBM's Rational Col-
laborative Lifecycle Management

Note

If pure::variants Integration for DOORS NG is going to be used in Web Hub mode with Jazz V7.0
then it is required that the pure::variants Web Components' relative domain-name must be same as
DOORS NG's relative domain-name (e.g. *.local.net). For example, if DOORS NG is accessible via
https://server.local.net:9443/rm then pure::variants Web Components must be accessible via URL like
https://otherserver.local.net:8443/pv.

If a common domain-name is not possible, the WebComponents should be configured regarding Same-
Site attributation for Cookies. For this, please see the optional step in our Tomcat resp. WebSphere con-
figuration guide.

6.1.7. Check-up list for a successful deployment

The following list contains all necessary steps to be have taken to make successful deployment of the DOORS
NG integration along with the DOORS NG application:

• Verify the web application server is started with a Java/JDK/JRE, which is not provided by IBM

Hint: Choose any other Java vendor, like Oracle, Amazon, Adoptium, OpenJDK instead.

• Verify the web application server is configured to be accessed via HTTPS/SSL endpoint.

Hint: Try to access via browser, using the HTTPS scheme, e.g. https://<server:port>/<widget>/pvscl.xml

• Verify the web application server is configured to have the SSL certificate of the DOORS NG application
trusted.

Hint: See section Configuration of Trust Store (Apache Tomcat or WebSphere Liberty) for defining a truststore,
which contains the DOORS NG application's SSL certificate.

• Verify the web application server can resolve the hostname of the DOORS NG application's URL.

Hint: Log-in to the web application server's machine, and try to follow the link of DOORS NG application URL,
with help of browser application, or any other command-line tool, like wget or curl.

• Verify the web application server has deployed the DOORS NG integration functional, by accessing the the
following URL: https://<server:port>/<widget>/vel (Please substitute with proper server and port, if other than
443, and use the appropriate context-path).

Hint: If successful, you should see a webpage showing the following line:

{"errorClass":"","errorMessage":"Module URI not received","errorCode":400}

6.1.8. Pre-defined settings for Web Integration in DOORS NG

The Web Integration for DOORS NG allows you to pre-define specific settings to simplify or limit the setup for
end-user.

Please see chapter Section 6.2, “Pre-defined settings for Web Integration” for detailed explanations, which settings
are available and how they are configured.

To use these pre-defined settings for DOORS NG Integration, you need to write the configuration (in JSON format)
into a file called settings.json and put this into the deployment directory.

pure::variants Setup Guide

61

If your Web Application Server (like Tomcat or WebSphere Libterty) extracts the war-archive automatically,
please add the settings.json file into the war-archive (called "com.ps.consul.web.ui.doorsng.*.war"

If your Web Application Server (like Tomcat or WebSphere Libterty) does not extract the war-archive automati-
cally and you extract it manually, please add the settings.json into the deployment directory of the Integration.

Finally, the deployment directory should have located the settings.json next to the pvscl.xml, as follows:

|-META-INF
|-WEB-INF
|-pvscl.xml
|-settings.json
|-... (other files)

6.2. Pre-defined settings for Web Integration

As administrator, you can pre-define the settings for the end-user, e.g. to connect to the WebHub immediately.
Thus, the user must not be aware of the WebHub URL and can use the Widget out-of-the-box.

Therefore, a JSON structure must be created as described in the following:

{
 "PV_HUB": "webhub",
 "PV_HUB_URL": "https://webhub.server/pv",
 "PV_HUB_EDITABLE": true,
 "PV_HUB_URL_EDITABLE": true,
}

The PV_HUB property defines the hub to be used, which can be either the WebHub (webhub) or DesktopHub
(desktophub).

The PV_HUB_URL property defines the URL for the WebHub.

The PV_HUB_EDITABLE property defines if the hub should be still editible by the user. If not defined, the hub
is still editable by user in widget.

The PV_HUB_URL_EDITABLE property defines if the webhub URL should be still editible by the user. If not
defined, the webhub URL is still editable by user in widget.

Note

Please see the respective sections of Web Integrations, like Polarion, Codebeamer or DOORS NG, how
the JSON structure must be deployed.

62

	pure::variants Setup Guide
	Table of Contents
	1. Introduction
	2. System Requirements
	2.1. pure::variants Desktop Client

	3. pure::variants Desktop Client
	3.1. Install pure::variants Desktop Client
	3.1.1. Install with pure::variants Installer
	pure::variants Enterprise Installer Command Line Options
	Install pure::variants in silent mode
	Update pure::variants in silent mode

	3.1.2. Install into an existing Eclipse
	Installation Requirements
	Using pure::variants Installer
	Using update site

	3.2. Update pure::variants Desktop Client
	3.2.1. Update with pure::variants Installer
	3.2.2. Update with Update Action
	3.2.3. Update with Eclipse package manager

	3.3. Uninstall pure::variants Desktop Client
	3.3.1. Uninstall using pure::variants Uninstaller
	3.3.2. Uninstall pure::variants from existing Eclipse instance
	Uninstall pure::variants in running Eclipse Instance
	Uninstall pure::variants using Eclipse uninstall application
	Cleanup Eclipse after uninstallation

	3.4. Basic Setup of the pure::variants Desktop Client
	3.4.1. Setup a pure::variants Desktop Client License
	3.4.2. Update a pure::variants Desktop Client License
	3.4.3. Add pure::variants Desktop Client License using environment variable or Java property

	3.5. Trouble Shooting
	3.5.1. pure::variants is low on memory

	4. pure::variants Connectors
	4.1. Installation of pure::variants Connectors
	4.2. pure::variants Connector for Capella
	4.3. pure::variants Connector for Team Foundation Server
	4.4. pure::variants Connector for PTC Integrity
	4.4.1. Add additional Fields for pure::variants
	4.4.2. Change Connector and In-Tool Integration Settings
	4.4.3. Change Fields Copied for Variant Creation
	4.4.4. Enable PTC Integrity Client Access

	4.5. Connector for IBM Rational Rhapsody
	4.5.1. Preparing IBM Rational Team Concert
	4.5.2. Preparing pure::variants

	4.6. Connector for codebeamer
	4.6.1. Installation of pure::variants Desktop Client
	4.6.2. Installation of Server Component and pure::variants Widget to codebeamer
	4.6.3. Installation without running in a docker container
	4.6.4. Installation in a docker image
	4.6.5. Pre-defined settings for Web Integration in Codebeamer
	4.6.6. Permissions
	4.6.7. Getting Version Information of the Server Component
	4.6.8. Configuration To Enable Open ID Connect (OIDC) Authentication
	4.6.9. docker-compose.yml for the NGINX Proxy
	4.6.10. oidc-auth-proxy.dockerfile for the NGINX Proxy
	4.6.11. oidc-auth-proxy-nginx.conf for the NGINX Proxy
	4.6.12. Steps to Setup a Docker-container the NGINX Proxy

	4.7. pure::variants Connector for Siemens Polarion
	4.7.1. Installation of pure::variants Desktop Client
	4.7.2. Installation of pure::variants server component for Polarion
	4.7.3. Configuration of pure::variants server component for Polarion
	Configuration steps in Polarion
	Connection configuration of the pure::variants integration

	4.7.4. Preparation of the Polarion project to store variability information
	Adding general settings information to Polarion
	Preparing restrictions for work items
	Preparing the enumeration transformation

	5. pure::variants Tool Integrations
	5.1. Install pure::variants Tool Integrations
	5.1.1. Install pure::variants Tool Integrations in silent mode
	5.1.2. Update pure::variants Tool Integrations in silent mode
	5.1.3. pure::variants Desktop Hub
	5.1.4. pure::variants Integration for Doors
	5.1.5. pure::variants Integration for PTC Integrity
	5.1.6. pure::variants Integration for IBM Rational Rhapsody
	5.1.7. pure::variants Integration for Enterprise Architect
	5.1.8. pure::variants Integration for Microsoft Office
	5.1.9. pure::variants Integration for Team Foundation Server
	5.1.10. Advanced Integration Setup
	Advanced Setup of Java-based Integrations
	Proxy Settings
	HTTPS Connection with License Server

	Advanced Setup of .NET-based Integrations
	Switching Back to Previous Server Connection Behaviour

	5.2. Update pure::variants Tool Integrations
	5.3. Uninstall pure::variants Tool Integrations
	5.4. Basic Setup of pure::variants Tool Integrations
	5.4.1. Server Connection Setup
	Switching Back to Previous Server Connection Behaviour
	Advanced Integration Setup
	Proxy Settings
	HTTPS Connection with License Server
	HTTPS Connection with Model Access Service (pure::variants Desktop Hub only)

	6. pure::variants Web Integration
	6.1. IBM Rational DOORS NG Web Integration
	6.1.1. Requirements for pure::variants Integration Deployment
	6.1.2. Installation on Apache Tomcat
	Software Requirements
	Installation of the pure::variants Integration for DOORS NG
	Configuration of Trust Store
	Update or reinstallation of pure::variants Integration for DOORS NG

	6.1.3. Installation on WebSphere Liberty
	Software Requirements
	Server Setup
	SSL Configuration
	Installation of the pure::variants Integration for DOORS NG
	Configuration of Trust Store
	Update or reinstallation of the pure::variants Integration for DOORS NG

	6.1.4. Uninstall the pure::variants Integration for DOORS NG
	Uninstall on Apache Tomcat
	Uninstall on WebSphere Liberty

	6.1.5. Administrative Setup of the pure::variants Integration for DOORS NG
	JTS Advanced Settings
	Jazz RM Whitelist
	User Extension Catalog URL
	Adding DOORS NG Integration in an already existing Catalog

	6.1.6. Add pure::variants Integration to DOORS NG
	6.1.7. Check-up list for a successful deployment
	6.1.8. Pre-defined settings for Web Integration in DOORS NG

	6.2. Pre-defined settings for Web Integration

