900 DUIE
Boos Systems

pure::variants User's Guide

pure-systems GmbH

pure::variants User's Guide
Version 6.0.5.685 for pure::variants 6.0

Publication date 2024
Copyright © 2003-2024 pure-systems GmbH

Table of Contents

OO 1 oo [0 1o o T SRR 1
OV S o LU (R 7 = QS 1

1.2. Link to PDF and Other Related DOCUMENEScciviviieeiiiie et 1

2. Software and License INSLAAIONoiiiiuiiiii e 3
2.1, SOftWare REQUITEIMENTSiue e e e e e e et e et e e e e et e e eeanaas 3

2.2, SOftWaAre INSLAIIAHONuuieeiii e e e e e e et e e e et e e e eate e e eene 3

2.3. Obtaining and INStalliNg @ LICENSE .. .cuuu i e e e e e e eaaeees 3

3. Introduction to Product Line Engineering with Feature MOdelSc.oiviiiiiiicii e, 5
130 I [oo 8o [o o T PSP 5

3.2, SOftWAIe ProOUCE LINES ...oeiviieeiiie ettt e et e e et e e e e aaa s 5

3.3. Modelling the Problem Space with Feature MOGElSccoiviiiiiiiiici e 6

3.4. Modelling the SOIULION SPACEuuiiiiiiei i e e e e e e e e e et e e e eaneees 8

3.5. Designing a variable architeCtureooviiiiiii e 9

3.6. Deriving ProduCt VANANESuueeeieiii e e e e e e e e e e e e e e s e e e e e e ean e eenn s 11

4. Getting Started With PUrEVANTANTESeevi i e e e e e e e e e et e et e e eeeas 13
4.1, Variant Management PErSPECHIVEciue i e e e e e e e e e ees 13

R I o 1P 13

4.3. USINg FEAUIE MOUEISiiiciii e e e e e e e e eaes 14

4.4, USiNg Configuration SPACESevuuiieinieiteeii i et e ete e e et s e et e e e e e et e e et e eet s e ean e e et aeraneeanaees 15

4.5. Transforming Configuration RESUITSccuuiiiiiiii e e e e e e e e 16

4.6. Viewing and Exporting Configuration RESUILSieiiiiiiiiiiiii e 17

4.7. Exploring Documentation and EXaMPIEScccuiiiiiiiii e 18

Lo o o= o (= S 19
o3 I [oo [0 1o o T PSPPI 19

5.2. Common Concepts in pure::variantS MOAEIScoouiiiiiiiii e 20
5.2.1. MOUE CONSLIAINES ...vuiiiiiiiiieeeiii ettt e et ettt e et e et e e e et e e e aaeneeennans 20

5.2.2. Element RESIICHIONS .ieuuuniiiiiiiiiieiiie et e et e e et e e e e aen s 21

5.2.3. Element REIGLIONScoouiiiiiiiii e 21

5.2.4, Element AMIDULES ...ooouiiii e 21

5.3, FEAUIE MOEIS ... 23
5.3.1. FEAUrE ALIHDULES ... e e 24

L3 o 11 0 1Yo o = =R 24
5.4.1. Structure of the Family Modelcooiiiiiii e 25

5.4.2. Restrictions in Family MOGEISccovuiiiiiiiii e e 26

5.4.3. Relations in Family MOGEIScc.uiiiiiii e 27

5.5. Variant DesCription MOGEIScc.uuiiiiiiiiiicii e e e e 28

5.6. Hierarchical Variant COmMPOSITIONcccuiiiiiiiiiieiii e e e e e e e e e e e e e e eanees 28

5.7. Inheritance of Variant DESCIIPLIONScvveiiiiiiii e e e e e e e e e ean s 28
B5.7.1. INhENtanCe RUIEScooviiieiii ettt e et e e e et e eeees 29

5.8. Variant DesCription EVAlUBLIONcoceuuiiiiiiiiii i e e e e e e e e e e e e e e e e e aneees 29
5.8.1. Evaluation AlIQOrithmiiiiiii e e 29

5.8.2. Partial EVAIUBLIONuuiiiiiiii e 31

5.9. Variant TransforMaLioNeeiiiieiieiiii et et e e et e e e et e e et e e e eabn e eeeees 32
5.9.1. The Transformation PrOCESSocieeuuieiiiiiiiee ettt e e e eeanns 32

5.9.2. Variant RESUIt MOUEISuuiiiiiiiieiii e e eanes 32

IO T | G U o (R 33
5.10.1. File based UPAateieviiiiiiiiiiiiiicii e e e e e e e e e e e aa s 34

LT I = PP 37
6.1. Evaluating Variant DESCIIPLIONScvuuuiiiieiiiiiiii e e e e e e e s e e e et e e e e e e e et e e eanaeeenees 37
6.1.1. Configuring the EValUGLIONcouuiiiii e e e e 37

6.1.2. Setting the VDM Configuration MOGEccuuiiiiiiiiiiieii e 40

6.1.3. Default Element SEleCtion SEAEccoveviiiiiiiiiiecc e 40

6.1.4. Automatic Resolving of Selection Problemsccooviiiiiiiiii e 40

6.1.5. AULOMALIC SEIECLION .ovuiieiiiii e e et e e b 41

6.1.6. Configuring the AULO RESOIVESiiiiiieiii e eaas 42

pure::variants User's Guide

6.2. Reuse of Variant DESCIIPLIONSuiiiiiiieieii ettt eeaas 43
6.2.1. Hierarchical Variant COmMPOSITIONccuuuiiiiutieiiiiiieeiiii et e et e et eeeni e 43
6.2.2. Inheritance of Variant DESCIPLIONScc.uuuiiiiiiie i 46
6.2.3. Load a Variant DESCIIPLIONiiiieiiieiiii et 47
6.2.4. Rename Reused Variant Description Modelcoooviiiiiiiiiii e 47
6.2.5. Reorder Reused Variant Description MOAElSooovviiiiiiiiiiiee e 48

6.3. Transforming VariantScoouuiiiiiiiiieiii ettt 50
6.3.1. Setting up @ Transformationioiiiiiii e 50
6.3.2. Standard TranSfOrMELIONcouuuiiiiit it e et e e e e e eeni e eees 60
6.3.3. User-defined transformation scripts with JavaSCriptccceivieveiiiniiiiiiinieeeieeenen 64
6.3.4. Transformation of Hierarchical Variantscccoooiiiiiiiiiiiiiiiiiiii e 68
6.3.5. Reusing existing Transformationuuieiiiiniiiiii e 68
6.3.6. Ant Build Transformation MOAUIEuuiiiiiiiiiii e 69

B.4. Valdating MOUEIS ...ttt e e s 69
6.4.1. XML Schema Model Validationccoouuiiiiiiiiiiie e 69
6.4.2. Model Check Frameworkcoouuiiiiii e 69

6.5. RefACIONNG MOUEIS ... ettt eaaaas 73

6.6. COMPANG MOUEIS . .oeuiiiiii ettt ettt et e e rb e e enaas 74
6.6.1. General ECHIPSE COMPAIEuuuiiiiiti ettt e ettt e et e et e et e e e bt eeeena e eeees 75
6.6.2. Model COMPAIre EQITOFuuiiiiiiiee it e e 75
B.6.3. CONTIICES ..ottt ettt e e 76
6.6.4. COMPArE EXAMPIE ..ottt et 76

6.7. Searching iN MOGEIS ..ot e 77
B.7.1. Variant SEAICNociiiiiiiiiiii e 77
B.7.2. QUICK OVEIVIBIW ...t eee et ettt e e e e e et e e et e e e e et e e et e e etn e e eeneaenaaes 79

B.8. ANBIYSE MOUEIS ...ttt et 80
6.8.1. Finding variant description models with similar selectionscccocooviviiiiiiieinnne. 80
6.8.2. Finding variant description models with the same selectioncccooooiiiiiiiiinn, 83
6.8.3. Find elements with the same selection states in all variant description models 84
6.8.4. Find constant and variable elements in all variant description modelsccccoeeeees 86

B.9. FIlteriNg MOUEIS ...ttt 88

6.10. Computing MOTEl MELTICSuuiieiiii et e e 89

6.11. Extending the TYPE MOTEl ... i 90

6.12. Using Multiple Languages in MOAEIScooouuiiiiiiiiiii e 92

6.13. Importing and EXPOrting MOGEISuuiiiiiii e e 93
6.13.1. EXPOrting MOGEIS .. .coeiiiiiiiii e 93
6.13.2. IMPOrting MOGEIS .. .coeiiieiii e e 99

6.14. External Build SUPPOIT (ANE TASKS) .evvuieieeitneiieii ettt e eeees 110
B.14. 1. PV.IMPONT ..ttt ettt e ettt e e e et e e ettt e e e e et aeeeeba e aees 113
B.14.2. PV.EVAIUBLE ...t 113
B.14.3. PV.IFANSTOMM ..o 114
B.14.4. PU.VAITELEouiieiiii e e 116
B.14.5. PV.INNENTT oot e 116
B.14.6. PV.COMMECTEcieteeet ettt ettt et e e et e et e et e e et e e e e e et e e ea e eena e 117
B.14.7. PV.SYNC ettt ettt ettt et 117
6.14.8. PV.SyNtaxSeMaNITCCNECKciiiii it 117
6.14.9. PV.MEIGESEIECLION ..ottt ettt et e e 117
B.14.10. PV.JAVBSCIIPL ... eeeetieeeeete e et e e et e e et e e et e ettt e e et et e et e et e e e e n e aeer e eeae 118
B.14. 11, PV.OFFIING .ot e e 118
B.14.12. PV.ONIING «..enee ettt ettt e aaans 118
B.14.13. PV.USEITOIESYIIC .. ettt ettt ettt e et e et e e et e e e aaa s 118
B.14. 14, PV.PIOPEITY oeneeeeeeit ettt ettt et ettt et e 119
B.14.15. PV.GDOULeeeeet ettt ettt e s 119

6.15. Linking between pure::variants and external rESOUICESuiveeuuneieeiiieeeeii e eeeeenns 119

6.16. Manipulating TeXt FIlES ... oot 120
6.16.1. Setting Up the Transformationoeeeiiiiiiiiii e 120
6.16.2. Editing Conditions and Calculations in Text FileScooviiiiiiiiiiiiiineeieeei, 121

6.17. Using KNOWN SErVErS PrafErENCESuuiiiiiiieeeie ettt et et 121

pure::variants User's Guide

6.17.1. Central deployment mechanism Of SEIVEISccoouuiiiiiiiiiei e 122

6.18. Convert a pure::variants 4 project into a pure:variantS 5 projectoovevevvnieiiiineeeeninnnnn. 124
6.19. Customizing the Variant Configuration PrOCESSoiiiiuuiiiiiiiii e 124
6.19.1. Creating a Variant Configuration Wizard Model ... 125
6.19.2. Configure a Variant Configuration Wizard Modelcccoooiiiiiiiiiiiiiini s 127

7. Graphical UsSer INEEITACE .. .oeuei ittt e e e e eneas 129
7.1. Getting Started With ECIIPSEevuiiiiii e 129
7.2. Variant Management PErSPECHIVE it 130
AR R =0 [o] = TP TUPPTR 130
7.3.1. CommON EITOr PAgESc.uuiiiiiiiii i 130
7.3.2. Feature Model EQITOroouuiiiiiiiiie et e 142
7.3.3. Family Model BAItOrooooiiiiiiii e 145
7.3.4. Variant Description Model EditOroooieeeiiiiiiii e 146
7.3.5. Variant Result Model EditOroooiiiiiiiiiii e 151
7.3.6. Model CoOMPAre EQITONoiiiiiiiiiiii e 152
T.3.7. METTIX EQITOr ooeeiieie et 152

A Y A= T PP SO TRPPPPPTRPPPIN 154
TAL ATMDULES VIBW .ttt e e e e e eees 154
T.4.2. VISUALIZATON VIBIW ...ttt e eaeens 155
TA.3. SEACN VIBIW .ttt 156
TAA OUINE VIBIW oottt e enaes 157
7.4.5. Problem VIeW/Task VIBWiiiiieieei e 157
TA.B. PrOPEMTIES VIBIW ..ottt ettt 157
TAT. REGHONS VIBIW ..ottt ettt e e e e e e enb e e 159
TA8. RESUIT VIBIW ettt 160
749, IMPACE VIBW oottt ettt e et ettt e e e et e e e eata e eees 162
TA20. PUSCL IDE ..ottt e e 165
7411 Variant PrOJECES VIBWuiiiiiiiei ettt e 167

7.5. MOE PrOPEITIES ...ttt ettt e et e e 168
7.5.1. CommON Properties Pageiiiiiiiiiiiii et 168
7.5.2. General Properties Pageocooiuiiiiiiii et 169
7.5.3. INNEMTANCE PAOE .. .oeeeiieiiii e 170

8. Additional pure::variants EXIENSIONScccuuuuiieiii ettt 173
8.1. Installation of Additional pure::variants EXIENSIONSveiieiiiiiiiiieeieiiee e 173
S E 1= 1 1 PO SPPPTR 175
9.1. Element AMIDULE TYPES ...iiiiieiiii ettt e e 175
9.2. Element REIBIION TYPESuuiiiiiiiet ettt ettt e et e e et eeeaa s 175
9.3, Element Varialion TYPEScoeuuuieiiiiiie ettt ettt et e e e e e et 177
9.4. Element SEIECHION TYPES ..iiiiiiiiiii ettt ettt e e et e e et e e et e e ena e eee 178
9.5. Predefined SoUrce EIEmMENt TYPESuuniiiiiii ettt ettt 178
LS ST I =0] S PP P PP SPPPPP 179
0.5, POl e 179
O.5.3. PSITTAOMENT ..ottt et e e e e 180
9.5.4, PSICONOXMI .t 180
O.5.5, PSICONOIEXE ...ttt ettt ettt ettt ettt n e naaas 181
O.5.6. PSIPVSCIXIMI <o 182
O.5.7. PSIPVSCITEXE ..ottt ettt ettt et e e aee 183
9.5.8. PSITIAgIilE ..o 185
0.5.9. PSIMEKEFTIE ..ot 185
9.5.10. PSICIaSSABSI TG ...ceeeeiieie e 186

O.5. 11, PSISYMIINK et e 187

9.6. Predefined Part EIemeEnt TYPES ...ovuiiiiii ettt e e e e 187
0.6.1. PSICIASSAlIBS .eeviiieiiii e 187
0.6.2. PSICIASS .ttt 188
0.6.3. PSITIag i 188
0.6.4. PSIVAMTADIE ..oeee i 188
0.6.5. PSIEAIUNE ...t 188

9.7. EXPression Language PUSCLciiiii ettt et 188

pure::variants User's Guide

9.7.1. HOW tO read thiS TEfErENCEeuieiiie e 189

L A ©0 1 1011 1| £ TP 189
0.7.3. BOOIEAN VAIUES ...ttt 189

Lo A 1T] o= £ 189

LS TS 1110 PP PPPRUPPPTI 189

Lo A T o] 1= o1 o g N 190
9.7.7. SELF @nd CONTEXT ..ouiiiiiiiiiiii ettt e e e e e e e e e e et eenaes 190
9.7.8. Name and ID REFEIENCESceuiiiiieieeee et e e 191
9.7.9. Element Selection State CheCKovniiniiiii e 192
O.7.10. AIITDULE ACCESS . ..iitiiiiitee e et e e e e e e e e anen 192
9.7.11. Logical COMDINGLIONScceuueieiiiii ettt ettt e e e 193

O.7. 02, REIGHONS ...eeieeieeie ettt 194

Lo I G T @0 oo 1 10 =1 P PS 194
9.7.14. VaAlUE COMPAITSON ..ottt ettt ettt ettt e e e et e e et eeeena s 195
0,705, ATTTNMEIICS ovnieiii e e e 196
9.7.16. Variable DECIAratioNSocvieiiieieieei ettt e e e e e e e e e e 196
9.7.17. FUNCEION DEFINITIONS .. .uinieiiiii e 196

Lo B T = 1 o 1o T = 1 197
LA LS B (= - (o] £ TP 197
0.7.20. ACCUMUIGLONS . .uiinitieeit it et e e et e ettt ettt et e e e e et e e e et e et e et e e a e et eaeeaeeneeaees 197
9.7.21. Eror HanGIiNGeeeeeeeieei ettt ettt 198

Lo I I 1 ¢ 2T = 1 o g 198
9.7.23. FUNCLION LIDIArY ...cceeieiiiiiii et 199
9.7.24. User-Defined PVSCL FUNCHIONS ... ciiiviieiiiiii ettt e 215

0.8. XSLT EXtENSION FUNCLIONS ...iviiiiieiiiiii e et e e e e e e e e e e e e e e e 215
9.9. Predefined Variablescouiiiiiiii e 220
9.10. REQUIBI EXPIESSIONS ...ueeeitti ettt e ettt e ettt e ettt e ettt e et et e e et et e e et et e e e e et e e e e aaa s 221
Lo I O I O 4 7= = o1 (= £ J PR 221
9.10.2. Chalr8Clel SEOUENCESceetun ettt e ettt e et e et et e e e e et e e ettt e e et et e e e e et e e e eaa s 222

LS 0 e T L= o= o) o PP 223

Lo IO R N § (= g = o o PR 223
O.10.5. GIOUDING ... eevtueeeeti ettt e ettt e ettt e e ettt e e ettt e e e e et e e e e et e e e eett e e e eete e eeeebnaeaeees 223
9.10.6. BOUNUAIIESuviieieie et ettt e e e e e e e e e e e e e eanas 223
9.10.7. BaCK REFEIENCESot 224

9.11. Keyboard SNOIMCULSoouuiiiiiiii e e e eeens 224
9.12. NaMING RESLIICHIONS ... eiiett ettt ettt ettt e e e e ettt e e e e et e eeeaaa s 225
LS T . o= o A AN 12 1 PP 225

Lo I 2 o) o L= gl A\ =T oL 225
9.12.3. Config SPACE NAITIE ... ittt 225
9.12.4. MOAE NAME .. oeiii e e e e e e e ens 225
0.12.5. REVISION NAIMIE ... ettt et e e e e e e e e enas 225

FO. APPENTICES ...ttt ettt e s 227
10.1. SOftware CONfIQUIALTIONccouueieiiii ettt ettt e e e e enanns 227
10.2. User Interface AAVanCed CONCEPEScveeueueiiiiiiee ettt et e et e e e e eanans 227
10.2.1. CONSOIE VIBW ... e e e aeeaaas 227

F0.3. GlOSSANY ..ttt 227
18T [GRS 231

Vi

List of Figures

1.1. Overview of family-based software development with pure:variants..........ccooevviiiiiiiiiincin e, 1
3.1 OVENVIEW Of SPLE GCHVITIES ...iiivuiiiiiiie e e e et e e et e e e e ae s 6
3.2. Structure and notation of feature models (using pure::variants Directed Graph Export)ccc.ccee... 7
3.3. Feature Model for meteorological PrOAUCE LiNEccuuiiiiiieii i e e e e 7
3.4. Enhanced Feature Model for meteorological Product Linecocevviiiiiiiiiiiiiiii e 8
3.5. pure::variants screen shot - solution space fragment shown at rightccooeeiiiiiiiiiii i 10
4.1. Initia layout of the Variant Management PErspECtiVEcvvueviiiiiii e e e e e e 13
4.2, Switching TOOIIPS ON/OFfeee e e e e e e e e e e e eaeeeens 14
4.3. A simple Feature Model Of @ Carocvuniiiii e e 14
4.4. VDM with a problematic SEIECHIONiiiii i 15
4.5. Transformation configuration in Configuration Space PropertieS...........ccvveviiiiiiiiiiiii e 16
4.6. Transformation button in EClipse toolbaroovviiii e 17
VA B 1V = o 1 A o PR 17
5.1. pure::variants transformation PrOCESSv.uueerueeiiieriiaeeat e eeteesteeet e sateeaneeetreranaeetnreranerannaees 20
5.2. (simplified) element MEta MOUElc..oiiiiiii e e 20
5.3. (Simplified) element attribute metarmOdelcovniiiiiiiii 21
5.4. Basic structure Of FEatUre MOOEISoiiiiiiii e 24
5.5. Basic structure of Family MOGEIScoouniiii e e e s 25
5.6. Sample Family MOGElooiiiii e e e e e e e 26
5.7. Model Evaluation Algorithm (PSeUdo COOE)ceuuniiiiiiiii e e e e 29
RS A I I = o 1= PSPPSR 32
5.9. General Update fUNCLONAIILYccuuiiiiieii e e e e e e e e e e eaaeeees 34
I O o o = g U (1 = PP 34
6.1. VDM Editor with Outline, Result, Problems, and AttributeS VIewcccoeviiiiiiiniiiiiiicieeceen, 37
6.2. Model Evaluation PreferEnCeS PagEcivii it e e e e e e e e e e e et e e e e aaeees 38
6.3. Configuration Space Evaluation SEttingS Pageovvuiiii i e e e 39
6.4. Variant Model Configuration MOOE Pagecvvuuiiiiieiii e et e e e e e e e 40
6.5. Automatically Resolved Feature SElECHONSuiiiiiiii e e e e 41
6.6. AULO ReSOIVEr PreferenCeS Pageccvviiiiii e e 42
6.7. Unique Names in aVariant HIerarChyccouiiiiiiiiii s e e e e e e e 44
6.8. Example Variant HIierarChyco.ioiiiiii i e e e e e e e e e eeen 46
(S I o= o IS = I=ox v o I DT oo P 47
6.10. Rename Reused Variant Description MOElccoouiiiiiiiiiii e 48
L300 I L= 0= T = oo 48
6.12. Reorder Reused Variant Description MOGEISvvuiiiiiici e e e e 49
6.13. REOrder INSLANCES DIAlOQ ..uvvvuiiitieii et e e e e e e e e e e e e et e et e et e eaaas 49
6.14. Multiple Transform BULLONcoouiiii e e e e e e e e e e e et e e et e e e e eeens 50
6.15. Configuration Space properties; Model SEIECtioNoovviiiiiii i 50
6.16. Configuration Space properties: ProPEITiEScvuu i e e e e e e eens 51
6.17. Configuration Space properties: Transformation input/output pathsccccocciiiviiiinien e, 52
6.18. Configuration Space properties: Transformation Configurationcceevieiiiiiiiieeiiecin e, 53
6.19. Transformation module SEleCtion diAlOgccuuiiiiiiiiii e e e e 54
6.20. Transformation MOdUIE PArAMELEISu.iiii et e e eaneeeens 55
6.21. Configuration Space properties: Transformation Configurationcceeeveiiiiiiieiii e, 56
6.22. Configuration Space properties: Transformation Configurationcceeeveiiiiiiiieiiiecin e, 57
6.23. Configuration Space properties: Transformation Configurationcceevveiiiiiiiieiiii e, 58
6.24. Configuration Space properties: Transformation Configurationcceeeveiiiiiiiieiii e, 59
6.25. Configuration Space properties: Transformation Configurationc.cceeeveiiiiiiiieiii e, 59
6.26. The Standard Transformation TYPe MOGE!ccouniiiiiiii e 60
6.27. Multiple attribute definitions for Value calculationccoceviviiiiiiiiii e 62
6.28. Sample Project using Regular EXPrESSIONScvuuuieiiiieeieeeiieeeieeesieeeeteeeaeesanseesaeestnaeetnaesaneees 63
6.29. Model Validation PreferenCeS Pagecvvuiiiii i e e e e e 70
6.30. New Check Configuration DialOgceuuieeeueiiieii eeens 71
6.31. Automatic Model Validation PreferenCes Pagecevuviiiiiiieii e 72
6.32. Model Validation iN PrOgrESSiviuiieiiieii e e e e e e e e e e e e e e st e et e e et e e et s e e eeanaees 73

Vii

pure::variants User's Guide

6.33. Refactoring context Menu fOr @fEaIUNEooeuuiiii e 74
6.34. MOdel COMPAIE EQITOrcoeutiiieiiiii et et e e e e e 77
6.35. The Variant SEarch DislOgc.uuuiiiiii ittt e eeaes 78
6.36. Quick Overview in aFeature MOEloooiiiiii e e 80
ST 7 PSSR 81
6.38. The similarity input cONfiguration dialOguieieitiieiiii e 82
6.39. The similarity calculation reSUlt dialogcoouuuuiiiiii e 82
6.40. SIMIAITLY IVIBEIIIX . .ceeitie ettt ettt e e et e e et et e e et et e e e e et e e e enbaneeeene 83
B4 L. e e e oottt oo e e et e ettt eh e e e e e et ettt ea e e e e e e eetttaan e e e e eeeeeernaa s 83
6.42. The same SEleCtion reSUIT dialOgceeuuuiiiii e e 84
6.43. The same SEleCtion reSUIT dialOgceeuruiiiiii e 85
6.44. The same SEleCtion reSUIT dialOgceeueuiieiii e e eees 86
6.45. The same SEleCtion reSUIT dialOgceeuvuiiiiii e e 87
6.46. The same SEleCtion reSUIT dialOgcceuvniiiii e 88
6.47. Filter definition di@lOgoooeienieiii s 89
6.48. MELICS FOr @MOTE! ... ittt e et e e et e e eeaens 90
6.49. Type Model Editor EXaMPIEn it 91
6.50. Type Model Editor EXAMPIEuiiiiiieieei et 91
6.51. Language selection in the element propertieS dialogoovevviiiiiiiiiiei e 92
6.52. HTML EXPOrt WIZArcoeuniiiiiii ettt ettt e e ettt e e et e e e eaa e eeees 94
6.53. HTML EXPOrt WIZArcouunieiiiiii ettt ettt ettt e e et eeeeab e eeees 95
6.54. HTML EXPOrt RESUIToeeiiee ittt ettt et e e e e eeeeas 96
6.55. HTML Transformation MOGUIEuiiiiii ettt e s 97
6.56. HTML Transformation Module Parametersooveeuuiieiiiiiie e 98
6.57. Directed graph exXport €XampPIE i 99
6.58. Directed graph export example (options LR direction, Colored)oooiviiiiiiiiiiiii e 99
6.59. IMPOIt DIBIOG ... eeeeet ettt ettt ettt ettt ettt et a e e e et et e e e e e e eaaas 100
6.60. Select Variant IMPOIt FOMMELuuiiiiii e eeaan s 101
B.61. SPECITY SOUICE TIl ... ettt e e 102
6.62. SpeCify pure:variantS MOE!cooouiniii e e 103
6.63. IMpOrted FEAtUIE MOUE! ettt e s 103
B.64. EXCE FIlE SIIUCTUIE ... ettt ettt e e et e e eat e aeees 104
B.65. MOt DIBIOG ... eeeeetn ettt ettt et ettt ettt e et et e e e et et e et e e e e eaaas 105
6.66. Select Variant IMpPOrt FOMMELuuiiiiii e 106
6.67. Select Target and SPeCify SOUMCE fileoouun i 107
6.68. Select Pattern for feature SEIECHIONcoieiiiiie e 108
6.69. IMported FEAtUIE MOUE! ettt e e 109
6.70. JavaScript Manipulator WiIzard Pagevceeuieieiiii ettt 109
B. 7L ANE BUITA ACHION ...ttt et e et e et e e e 110
6.72. ANt BUIlA JRE ParamMELEruuiiiiiiiiiii ettt et e e 111
6.73. Relations View With eXternal LinkKScoooiiiiiiii e 120
6.74. Family Model with ps:pvscltext transformation SEIUDuuiieriiieiiii e 120
6.75. Editing pvSCL conditions OF CalCUIALIONScciiiuiiieiiii e 121
6.76. KNOWIN SEIVEIS PAOE ... eeeteeei ettt et et e et et ettt ettt et et r et et e et et e et e e eran et et e e e e eenans 122
6.77. PUrE::VariantS PrOJECE VEISIONieeii ettt ettt ettt et e e et e e e eaa s 124
6.78. New Variant Configuration MOGE!oiiiiiiiiii e 125
6.79. Add the new Variant Configuration Model to Configuration SPacesc.uvveieriinieieiiineeeeninnn. 126
6.80. Add a Variant Configuration Model to a Configuration SPaceccceuvieieiiiiieiiiiiiieeeiiiieeeeneen 126
6.81. VCWM Editor General SEttings SECHIONoiieutiiiiiiiee ettt 127
6.82. VCWM Editor Start Page SECHIONoiiiiiiieiiii et 128
6.83. VCWM Editor Finish Page SECHIONcocuuiiiiiii e 128
7.1. Eclipse WOrkbenCh ElEmMENtS i e 129
7.2. Variant management perspective standard 18Y0ULovoieuuiiiiiii e 130
7.3, CONSITAINIS VIBW ...ttt e et e e et e e et et e e et et e e e e et e e e e eba s 132
7.4. Selected Element SEECtioN TOOIoiiiiiiiiii e e 134
7.5. Feature/Family Model Element Creation TOOISccouuuniiiiiiiieeeiii e 135
7.6. Family Model Element Propertiescoouui i e 136
7.7. Element REIBIIONS PaOEoieiiti ittt ettt e e e e 137

viii

pure::variants User's Guide

7.8. Sample attribute definitions fOr afEAIUIEuuiiiiii e 138
7.9. Restrictions page of element propertieS dialogoovvvuieiiiiiiei e 139
7.10. Constraints page of element propertieS dialogcoeuuuieiiiiiiieii e 140
7.11. Advanced pvSCL eXPreSSion EITOFuuiiiiiiiieiiii et 141
7.12. Element SElECtioN ialOguuieieeiieiiiii e 142
7.13. Feature Model Editor with outline and property VIEWccoouuiiiiiiiiineii e 143
714, NEW FEAIUrE WIZAIMceeiii et e et e et e e et e e e e e eeens 144
7.15. Feature Model Element Propertiescoouu i 145
7.16. Open Family Model Editor with outline and property VIEWccouuiiiiiiiiiiiieiiiieeeei e 146
7.17. Finalize Configuration DI@lOQccuuuiiiiitieeeiii ettt e et e e et e e e eee 147
7.18. Variant Configuration Wizard Start PagEccouuuuiiiiiiiieiiei et 148
7.19. Variant Configuration Wizard SEED Pageoiiiiiiieiiiii et 149
7.20. Variant Configuration Wizard Finish Pagec.uuiiiiiiiiiii e 149
7.21. Specifying an attribute value in VDM with cell editorccooviiiiiiiiiiiii e, 150
7.22. Outline view showing the list of available elementsSin aVDMocooiiiiiiiiiiiiiiii e 151
7.23. VRM Editor with outline and properti€s VIEWcocuuuueiiiiiieiiii e 152
7.24. Matrix Editor of a Configuration SPaCEc.uuuiiiiiiieiiii e 153
7.25. EXPOrt MELTX DIGIOG . ..evueeeetei ettt ettt ettt 154
7.26. Attributes view (right) showing the attributes for the VDM ... 155
7.27. Visualization view (left) showing 2 named filters and 2 named [ayoutsScoevvviiiiiiiiiineeiinnnnen. 155
7.28. Variant SEArCH VIBW (TTBE) ... eiiiii ettt ettt ettt e e e e e 156
7.29. Variant Search VIiew (TalE)uu it eees 157
7.30. Properties VIeW fOr @ TEALUINE i e 158
7.31. Description tab in Properties View for @relationoooeeuiiiiiiiiieeei e 158
7.32. Properties view for avariant altribULE ... 158
7.33. Relations view (different layouts) for feature with a psirequires to feature '‘Main Component Big'...... 160

7.3, RESUIL VIBIW .ttt oottt oottt oo e e et e ettt e e e e e et et e ettt e e e e e e e eaetbbann e eaeaeens 161
7.35. ResUlt VIew in DEItAMOUEiiiiiiiei et 162
7.36. OPEN IMPBCE VIBIW ...eeeeet e ettt ettt ettt e e e e et e e e e et e e e eaaenaeeenes 163
7.37. IMpact CaAlCUIBLION RESUITceeiieeeii ettt e e et e e et e eeena e eeens 164
7.38. IMPAaCt VIeW CONEXE IMEBINUvuiiiiiiie ettt ettt e e e et e eeenan s 165
7.39. OPEN PUSCL IDE VIBW ...ttt e e et e e e s 166
7.40. OPEN PUSCL IDE VIBW ...ttt e e e e e e et e e e e e e e eeeenannnes 166
7.41. Assign context element 10 PUSCL IDEiiiiiiiiiiiii e 167
7.42. The PVSCL IDE VIBW ...uiiiiiieeeiitee ettt e ettt e e e e e e e e e ettt e e e e e e e eeennannnns 167
7.43. The Variant ProJECIS VIBWuun ettt 168
7.44. Feature Model PropertieS Pageooiiiiiieiiii e 169
7.45. General Model Properties Pageu.ieiiiieieei ettt 170
7.46. Variant Description Model INheritanCe Pagevoviiiiiiiiiii e 171
9.1. pvSCL Code Library Model Property Pageoooeeuiieiiiiieeeee et 215
10.1. The configuration dialog Of PUFEIIVAITANTSc.uuniiiiiiiiee e 227

List of Tables

5.1. Mapping between input and concrete MOAEl tYPESvuiviiiiiiiei e 33
6.1. Configuration SPaCE SEIINGS .. .cvuuiiieeiiti e e e e e e e e e e e e e e e e e et e e eaneeaanas 68
(SR 2 - o (o 110 @] 1= - 1o 74
6.3, TADIE OF CSS ClASSES ...t iiiiiiieee ettt et e et e et e e e et e e eeaens 95
L3 1 oo o B = o P 103
6.5. ENVIFONMENT VaTADIES .. .ceeiiiiiieii e e et e e et e e et e e e et e e e eatn e eeee 111
6.6. runant Command LiNe Palr@MELErScoeuuiieiiiii e e e e e e e e e et 112
6.7. variantscli Command Line ParameEterSoiieiuiiiiiiiii et e e 112
6.8. Table Of SEVEr CaEUOIY IDS ...u i e e e e e e e et e e et e eanaeees 123
SIS N o] oo = o I AN 111U (= 1Y/ o= 175
9.2. Supported relations between elementS (1)c..vvvreiorii e e 176
9.3. Supported Relations between EIements (I1) e e 177
9.4. Element variation types and itSICONScciuuiiiiiiiiii e e e e e e e e aeas 177
9.5. Types of element SEIECHIONSuuiiii e e e e 178
9.6. Predefined SOUrCE EleMENt TYPES ... cuuu i e e e e e e e e e et e e e e 178
9.7. Registered XSLT EXIENSIONSuuiiiiiiiiieiii et ee et e s e e e e e e e e e e e e et e e et e e et e e e eeen s 180
R e (=0 (= 110 o I i Y 0= T 187
9.9. Supported fOrmat SPECITIENS ... i i e e e 204
9.10. Extension functions providing model informationccoocuiviiiiiiii e 216
9.11. Extension functions providing transformation informationccccccciiiiiiiiiiiie e, 217
9.12. Extension elements for 10gging and USEr MESSAGESvuuevvrnieeineeiiieeieeeeeeeetn e e e e et e e eaen e e e eeanas 218
9.13. Extension functions providing file Operationsceveiiiiiii i 219
9.14. Extension functions providing String OPEratioNScccuuieiiuieeii e e e e 220
9.15. SUPPOIEA VATl ESuieii i e e 220
9.16. Common Keyboard ShOMCULSociuuiii e e e e e e e anas 224
9.17. Model Editor Keyboard ShOMCULSovvuniii e e e e e e e e e eaens 224
9.18. Graph Editor Keyboard SNOMCULSciieiiiiiiei e e e e e e e e e e e eees 224

Xi

Xii

List of Examples

9.1. A sample conditional document for use with the ps.condxml transformationcccoeeveneennnn. 181
9.2. Example Use Of PViVAIUE-OFiei e e 181
9.3. A sample conditional document for use with the ps:condtext transformationccccoeeeveennnnns 182
9.4. A sample conditional document for use with the ps:pvsclxml transformationccooocveievinnn. 183
9.5, EXampPIe USE Of PVIBVEL ... e 183
9.6. A sample conditional document for use with the ps:pvscltext transformationcccocceevevinennnnn. 185
9.7. Generated code for a ps:iflagfile for flag "DEFAULT" withvalue "1"cocoviiiiiiiiiiii e 185
9.8. Generated code for a ps.makefile for variable "CXX_OPTFLAGS" with value "-O6" 186
9.9. Generated code for a ps:classalias for alias "io::net::PCConn" with aliased class "NoConn" 186
9.10. Generated code for a ps.classalias for alias "io::net::PCConn" with aiased class "NoConn" with in-

CludEbasedit SEE T "USIWIM-SIC" .oeee e e et e e et e e e et e e e e et e e e eaan s 186

Xiii

Xiv

Chapter 1. Introduction

1.1. What is pure::variants?

pure::variants provides a set of integrated tools to support each phase of the software product-line development
process. pure::variants has also been designed as an open framework that integrates with other tools and types
of data such as requirements management systems, object-oriented modeling tools, configuration management
systems, bug tracking systems, code generators, compilers, UML or SDL descriptions, documentation, source
code, etc.

Figure 1.1, “Overview of family-based software development with pure::variants’ shows the four cornerstone ac-
tivities of family-based software devel opment and the model sused in pure::variants asthe basisfor these activities.

When building the infrastructure for your Product Line, the problem domain is represented using hierarchical
Feature Models. The solution domain, i.e. the concrete design and implementation of the software family, isim-
plemented as Family Models.

The two models used for Application Engineering, i.e. the creation of product variants, are complementary to the
models described above. The Variant Description Model (VDM), containing the sel ected feature set and associated
values, representsasingle problem from the problem domain. The Variant Result Model describesasingle concrete
solution drawn from the solution family.

Figure 1.1. Overview of family-based softwar e development with pure::variants

£ Problem Domain £ Solution Family Domain
{3 Feature Models (=) Family Models
$ Application Problem EE Concrete Solution
Domain Domain
@ Variant (& Result Model

Description Model

pure::variants manages the knowl edge captured in these model sand providestool support for co-operation between
the different roles within a family-based software devel opment process:

» The domain analyst uses a Feature Model editor to build and maintain the problem domain model containing
the commonalities and variahilities in the given domain.

» The domain designer uses a Family Model editor to describe the variable family architecture and to connect it
viaappropriate rulesto the Feature Models.

» The application analyst uses a variant description model to explore the problem domain and to express the
problems to be solved in terms of selected features and additional configuration information. This information
is used to derive a Variant Result Model from the Family Model(s).

» The application developer generates a member of the solution family from the Variant Result Model by using
the transformation engine.

1.2. Link to PDF and Other Related Documents

The Workbench User Guide (Help->Help Contents) is agood starting point for familiarizing yourself with the
Eclipse user interface.

Link to PDF and Other Related Documents

The pure::variants XML transformation system is described in detail in the XML Transformation System Manual
(see Eclipse online help for aHTML version).

Any features concerning the pure::variants Server are described in the separate documents "pure::variants Server
Support Plug-In Manua" and "pure::variants Server Administration Plug-In Manual". The server is availablein
the products "Professional” and "Enterprise”.

The pure::variants Extensibility Guide is a reference document for information about extending and customizing
pure::variants, e.g. with customer-specific user interface elements or by integrating pure::variantswith other tools.

This document is available in online help as well asin printable PDF format here .

pure::variants uses open source libraries. The list of used librariesis available here .

Chapter 2. Software and License Installation

2.1. Software Requirements

Please consult section System Requirements in the pure::variants Setup Guide for detailed information on
how to install the connector (menu Help -> Help Contents and then pure::variants Setup Guide -> System
Requirements).

2.2. Software Installation

Please consult section pure::variants Connectors in the pure::variants Setup Guide for detailed informa-
tion on how to install the connector (menu Help -> Help Contents and then pure::variants Setup Guide ->
pure::variants Connectors).

2.3. Obtaining and Installing a License

Please consult section Basic Setup of the pure::variantsClient inthe pure::variants Setup Guide for detailed
information on how to install the connector (menu Help -> Help Contents and then pur e::variants Setup Guide
-> Basic Setup of the pure::variants Client).

Chapter 3. Introduction to Product Line
Engineering with Feature Models

3.1. Introduction

Althoughtheterm " (Software) Product line Engineering" isbecoming morewidely known, thereis still uncertainty
among developers about how it would apply in their own development context. The purpose of this chapter isto
explain the design and automated derivation of the product variants of a Software Product Line using an easy to
understand, practical example.

One increasing trend in software development is the need to develop multiple, similar software products instead
of just asingle individual product. There are several reasons for this. Products that are being developed for the
international market must be adapted for different legal or cultural environments, aswell asfor different languages,
and so must provide adapted user interfaces. Because of cost and time constraints it is not possible for software
developersto develop anew product from scratch for each new customer, and so software reuse must beincreased.
These types of problems typically occur in portal or embedded applications, e.g. vehicle control applications.
Software Product Line Engineering (SPLE) offers a solution to these not quite new, but increasingly challenging,
problems. The basis of SPLE is the explicit modelling of what is common and what differs between product
variants. Feature Models are frequently used for this. SPLE also includes the design and management of avariable
software architecture and its constituent (software) components.

This chapter describes how this is done in practice, using the example of a Product Line of meteorological data
systems. Using this example we will show how a Product Line is designed, and how product variants can be
derived automatically using pure::variants.

3.2. Software Product Lines

However, before we introduce the example, we'll take a small detour into the basics of SPLE. The main difference
from “normal”, one-of-a-kind software development, is a logical separation between the development of core,
reusable software assets (the platform), and actual applications. During application development, platform soft-
wareis selected and configured to meet the specific needs of the application.

The Product Line's commonalities and variabilities are described in the Problem Space. This reflects the desired
range of applications (“product variants”) in the Product Line (the “domain”) and their inter-dependencies. So,
when producing a product variant, the application developer uses the problem space definition to describe the
desired combination of problem variabilities to implement the product variant.

An associated Solution Space describes the constituent assets of the Product Line (often referred to as the “ plat-
form™) and its relation to the problem space, i.e. rules for how elements of the platform are selected when certain
values in the problem space are selected as part of a product variant. The four-part division resulting from the
combination of the problem space and solution space with domain and application engineering is shown in Fig-
ure 3.1, “Overview of SPLE activities’ . Severa different options are available for modelling the information in
these four quadrants. The problem space can be described e.g. with Feature Models, or with a Domain Specific
Language (DSL). There are also a number of different options for modelling the solution space, for example com-
ponent libraries, DSL compilers, generative programs and also configuration files.

Modelling the Problem Space with Feature Models

Figure 3.1. Overview of SPLE activities

Problem Space Solution Space

. Structure and selection
Domain Variability within the rules for the solution
Engineering problem area. elements of the

Product Line platform.

- The needed platform
Application Specification of the elements (and
Engineering product variant. additionalapplication

elements if required).

In the rest of this chapter we will consider each of these quadrants in turn, beginning with Domain Engineering
activities. Well first look at modelling the problem space - what is common to, and what differs between, the
different product variants. Then we'll consider one possible approach for realising product variantsin the solution
space using C++ as an example. Finally we'll look at how Application Engineering is performed by using the
problem and solution space modelsto create aproduct variant. In redlity, thislinear flow israrely found in practice.
Product Lines usually evolve continuously, even after the first product variants have been defined and delivered
to customers.

Our example Product Linewill contain different productsfor entry and display of meteorological dataonaPC. An
initial brainstorming session has led to a set of possible differences (variation points) between possible products:
meteorological datacan come from different sensors attached to the PC, fetched from appropriate Internet services
or generated directly by the product for demonstration and test purposes. Data can be output directly from the
application, distributed asHTML or XML through an integrated Web server or regularly written to file on afixed
disk. The measurements to make can also vary: temperature, air pressure , wind velocity and humidity could all
be of interest. Finally the units of measure could also vary (degrees Celsius vs. Fahrenheit, hPa vs. mmHg, m/
svs. Beaufort).

3.3. Modelling the Problem Space with Feature Models

Wewill now convert the informal, natural-language specification of variability noted above into aformal mode,
in order to be ableto processit. Specifically, wewill use a Feature Model. Feature models are simple, hierarchical
modelsthat capture the commonality and variability of aProduct Line. Each relevant characteristic of the problem
space becomes afeature in the model. Features are an abstract concept for describing commonalities and variabil-
ities. What this means precisely needsto be decided for each Product Line. A featurein thissenseisacharacteristic
of asystem relevant for some Stakeholder. Depending on the interest of the Stakeholders a feature can be for the
example a requirement, atechnical function or function group or a non-functional (quality) characteristic.

Feature models have a tree structure, with features forming nodes of the tree. Feature variability is represented
by the arcs and groupings of features. There are four different types of feature groups: “mandatory", “optional”,
"alternative" and “or”.

When specifying which features are to be included in a variant the following rules apply: If a parent feature is
contained in avariant, all its mandatory child features must be also contained ("n fromn"), any number of optional
features can beincluded ("mfromn, 0 <=m<=n"), exactly onefeature must be selected from agroup of aternative
features ("1 from n"), at least one feature must be selected from a group of or features ("m from n, m>1").

Modelling the Problem Space with Feature Models

Figure 3.2. Structure and notation of feature models
(using pure::variants Directed Graph Export)

Mandatory Optional Alternative A Alternative B Or-Feature A Or-Feature B

Thereis no single standard for the graphical notation of feature models. We use a simplified notation created by
pure::variants Direct Graph Export (see the section called “ Directed Graph Export”). Alternatives and groups of
or features are represented with traverses between the matching features. In this representation both colour and box
connector are used independently to indicate the type of group. Our notation isshownin Figure 3.2, “ Structure and
notation of feature models (using pure::variants Directed Graph Export) ” . Using thisnotation, our examplefeature
model, with some modifications, is shown in Figure 3.3, “ Feature Model for meteorological Product Line” : Each
Feature Model has a root feature. Beneath this are three mandatory features — "Measurements”, "Data Source"
and "Output Format". Mandatory features will always be included in a product variant if their parent feature is
included in the product variant. Mandatory features are not variable in the true sense, but serve to structure or
document their parent feature in some way. Our example also has aternative features, e.g. "External Sensors’,
"Demao" and "Internet" for data sources. All product variants must contain one and only one of these alternatives.

Figure 3.3. Feature Model for meteorological Product Line

//_,/ Weather Station \)

Measurements Data Source Output Format Alarm

/N LN L T |

Wind Speed - Temperature - Pressure External Sensors - Demo - Interet File - Web Server - Text Language Freeze Point -~ Storm Alert

| [N

Format English German

L0

HTML --- XML

At this stage we can already see one advantage that feature modelling has over a natural-language representation
- it removes ambiguities - e.g. whether an individual variant is able to process data from more than one source.
When taking measurements any combination of measurementsis meaningful and at |east one measurement source
is necessary for a sensible weather station, to model this we use a group of Or. Usually simple optional features
are used, such asthe example of the freezing point alarm. Further improvements can also be made by refining the
model hierarchy. So the strict choice between Web Server output formats- HTML or XML — can be made explicit.

Feature models also support transverse relationships, such as requires (ps.requires) and mutually exclusive
(ps.conflicts), in order to model additional dependencies between features other than those already described. So,
in the example model, a selection of the “Freeze Point” alarm feature is only meaningful in connection with the
temperature measurement capability. This can be modelled by an "Freeze Point" requires " Temperature" relation-
ship (not shown in the figure). However, such relations should be used sparingly. The more transverse relations
there are, the harder it is for a human user to visualize connections in the model.

When creating a feature model it can be difficult to decide exactly how problem space variabilities are to be
represented in the model. In this caseit is best to discuss this further with the customer. It is usually better to base
these discussionsaround the featuremodel, since such modelsare easier for the customer to understand than textual
documents and / or UML models. Formalising customer requirements in this way offers significant advantages
later in Product Line development, since many architectural and implementation decisions can be made on the
basis of the variahilities captured in the feature model.

Inthe example, the use of the output format XML and HTML can be clarified. Themodel explicitly definesthat the
choice of output format is only relevant for Web Server, aformat selection is not possible for File or Text output.

Modelling the Solution Space

However, in the context of a discussion of the feature mode! it could be decided that HTML is also desirable for
the on-screen (Window) representation and could also be applicable for file storage.

This results in the modified feature model shown in Figure 3.4, “Enhanced Feature Model for meteorol ogical
Product Line” .

Figure 3.4. Enhanced Feature Model for meteorological Product Line

//// Weather Station \g

Alarm

N N N N T [

Pressure - Temperature - Wind Speed Internet - Demo External Sensors Text - Web Server - File Format Language Freeze Point Storm Alert

FNTN LY

XML HTML Plaintext English German

We have added “Plaintext” to the existing features; this was implicitly assumed for output to the screen or to a
file. We have modelled the mutual exclusion of XML and screen display (“ Text”) using a (transverse) relationship
between these features (not shown).

The previous discussion describes the basic feature model approach commonly found in the literature. How-
ever, pure::variants extends this basic approach. To complement the so-called hard relations between features
(ps.requires and ps.conflicts) the weakened forms ps.recommends and ps.discourages have been added to many
feature model dialects. pure::variants also supports the association of named attributes with features. This alows
numeric values or enumerated values to be conveniently associated with features e.g. the wind force required to
activate the storm alarm could be represented as a " Threshold" attribute of the feature " Storm Alert".

An important and difficult issue in the creation of feature models is deciding which problem space features to
represent. In the example model it is not possible to make a choice from the available hardware sensor types (e.g.
use of a PR1003 or a PR2005 sensor for pressure). So, when specifying a variant, the user does not have direct
influence on the selection of sensor types. These are determined when modelling the solution space. If the choice
of different sensor types for measuring pressure is a major criterion for the customer / users, then appropriate
options would have to be included in the feature model.

Thismeansthat the featuresin the problem space are not a 1: 1-illustration of the possibilitiesin the solution space,
but only represent the (variable) characteristics relevant for the users of the Product Line. Feature models are a
user-oriented (or marketing-oriented) representation of the problem space, not the solution space.

After creating the problem space model we can use it to perform someinitial analysis. For example, we can now
calculate the upper limit on the number of possible variants in our example Product Line. In this case we have
1,512 variants (the model in Figure 2 only has 612 variants). For such a small number of variants the listing of
all possible variants can be meaningful. However, the number of variants is usually too high to make practical
use of such an enumeration.

3.4. Modelling the Solution Space

In order toimplement the sol ution space using asuitabl e variable architecture, we must take account of other factors
beyond the variability model of the problem space. These include common characteristics of all variants of the
problem space that are not modelled in the feature model, aswell as other constraints that limit the solution space.

These typically include the programming languages that can be used, the development environment and the ap-
plication deployment environment(s). Different factors affect the choice of mechanismsto be used for converting
from variation points in the solution space. These include the available development tools, the required perfor-
mance and the available (computing) resources, as well as time and money. For example, use of configuration
files can reduce development time for a project, if users can administer their own configurations. In other cases,
using preprocessor directives (#ifdef) for conditional compilation can be appropriate, e.g. if smaller program sizes
are required.

There are many possibilities for implementation of the solution space. Very simple variant-specific model trans-
formations can be made with model-driven software development (MDSD) tools by including information from

Designing a variable architecture

feature model sin the M odel - Transformation process, e.g. by using the pure::variants Connector for Ecore/openAr-
chitectureWare or the pure::variants Connector for Enterprise Architect. Product Lines can aso be implemented
naturally using "classical" means such as procedural or object-oriented languages.

3.5. Designing a variable architecture

A Product Line architecture will only rarely result directly from the structure of the problem space model. The
solution space which can be implemented should support the variability of the problem space, but there won't
necessarily be a 1:1 correspondence of the feature models with the architecture. The mapping of variahilities can
take place in various ways.

In the example Product Line wewill use asimple object-oriented design concept implemented in C++ . A majority
of the variability is then resolved at compile-time or link-time; runtime variability is only used if it is absolutely
necessary. Such solutions are frequently used in practice, particularly in embedded systems.

The choice of which toolsto use for automating the configuration and/ or production of avariant playsasubstantial
role in the design and implementation of the solution space. The range of variability, the complexity of relations
between problem space features and solution congtituents, the number and frequency of variant production, the
size and experience of the development team and many further factors play a role. In simple cases the variant
can be produced by hand, but quickly automation in the various forms like small configuration scripts, model
transformers, code generators or variant management systems such as pure::variants will speed production.

For modelling and mapping of the solution space variability pure::variants and itsintegrated model transformation
inmost caseisanidea. ThisusesaFamily Model to model the solution space, to associate sol ution space elements
with problem space features, and to support the automatic selection of solution space elements when constructing
aproduct variant.

Family models have a hierarchical structure, consisting of logical items of the solution architecture, e.g. compo-
nents, classes and objects. These logical items can be augmented with information about "real" solution elements
such as source codefiles, in order to enable automatic production of asolution from avalid feature model config-
uration (more on this later). For each family model element aruleis created to link it to the solution space. For
example, the Languages implementation component is only included if the Languages feature has been selected
from the problem space. To achieve this, a Languages rule is attached to the "Languages' component . Any item
below “Languages’ in the Family model can only be included in the solution if the corresponding Languages
feature is selected.

A pure::variants screen shot showing part of the solution space is shown in Figure 3.5, “pure::variants screen shot
- solution space fragment shown at right” .

Designing a variable architecture

Figure 3.5. pure::variants screen shot - solution space fragment shown at right

£ Variant Management - WeatherStationExarnple/Variants/Berlin.vdm - Eclipse SDK

File Edit Mavigate 5earch Project Prolog Run Variant

SOL Window Help

O X

- C ®® Q- 5 - E§|| |_§J - = A [T A B |Tn_| Variant Mana...
| 60 eplaB| & & &
2, Variant Projects 52 =08 Berlinwvdm &2 =8 Relations | 5% Result 2 =8
R 7 w « 1 (F) Weather Station _ EOA S AT
7
v (=% WeatherStationExample Al v Bl v (F) Weather Station
= input i '] 3 (F) Temperature v () Languages
= reports ¥ % () Wind Speed F) German
(= script [1X ® Air Pressure - w (F) Sensors
(Z# Variants v v 1 ® Languages F) Temperature
|=| Readmetxt E34b () English F) Wind Speed
v B WS.ccfm]| () German v @ HTML Weather Station
v & HTML Weather Station v L7 ® Wamings v B WeatherStationHTML
B3 WeatherStationHTML [1% () Gale/ Strong Wind of sredir= "
v [B Wsafm . 1%) Heat o dir=""
i [- 8 s
= = % images
o= Outline | 6" Visualization &3] g js
= & ecdoc Weather Station User Manual
Table Layouts & echtml: index
E Tree La)riuts i Feature Models Family Models < >
S Filters & Properties | Ll Bookmarks |l Problems 2 ¥ =0
(2% Matrix Variant Filters 0 errors, 2 warnings, 2 others
Description Resource Path Location Type
% Warnings (2 items)
i Infos (2 items)
< >

1
E

12:65 69 (3)

In our example, an architectural variation point arises, among other possibilities, in the area of data output. Each
output format can be implemented with an object of a format-specific output class. Thus in the case of English
output, an object of type EnglishOutput is instantiated, and with German output, an GermanOutput object. There
would also be the possibility here of instantiating an appropriate object at runtime using a Strategy pattern. How-
ever, since the feature model designates only the use of aternative output formats, the variability can be resolved
at compile-time and a suitable object can be instantiated using code generation for example.

In our exampl e solution space alookup in atext database is used to support multiple natural languages. The choice
of which database to use is made at compile-time depending on the desired language. No difference in solution
architectures can be detected between two variants that differ only in the target language. Here the variation point
is embedded in the datalevel of the implementation. In many cases managing variable solutions only at the archi-
tectural level isinsufficient. As has aready been mentioned above, we must also support variation points at the
implementation level, i.e. in our case at the C++ source code level. Thisis necessary to support automated product
derivation. The constituents of a solution on the implementation level, like source code files or configuration files
which can be generated, can also be entered in the family model and associated with selection rules.

So the existence of the Languages component in aproduct variant is denoted using a#define preprocessor directive
in aconfiguration Header file. In addition, an appropriate abstract variation point variable "Languages' must first
be created of thetype ps.variablein the family model. The value of thisvariableis determined by aValue attribute.
Inour casethisvaueisaways 1if the variableis contained in the product variant. An item of type ps:flagfile can
now be assigned to this abstract variable. Thisitem also possesses attributes (file, flag), which are used during the
transformation of the model into "real” code. The meaning of the attributes is determined by the transformation
selected in the generation step . Here we use the standard pure::variants transformation for C / C++ programs,
which produces a C-preprocessor #define- Flags in the file defined by file from these specifications.

Separating the logical variation point from the solution makes it very simple to manage changes to the solution
space. For example, if the same variation point requires an entry in a Makefile, this could be achieved with the
definition of afurther source element, of the type ps.makefile, below the variation point "Languages".

10

Deriving product variants

3.6. Deriving product variants

The family model captures both the structure of the solution space with its variation points and the connection of
solution and problem space. Not only is the separation of these two spaces important, but also the direction of the
connection, since problem space models in most cases are much more stable than solution spaces; the linkage of
the solution space to the problem space is more meaningful than the selection of solution items by rules in the
problem space. This also increases the potential for reuse, since problem space models can simply be combined
with other (new, better, faster) solutions. In pure::variants the linkage between models is determined by creating
a configuration space with the relevant feature and family models as members.

Now we have all the information needed to create an individual product variant. The first step is to determine a
valid selection of characteristics from the feature model. In the case of pure::variants, the user is guided towards a
valid and compl ete feature selection. Once avalid selection isfound, the specified feature list aswell asthe family
model serve asinput for the production of avariant model. Then, asis described above, the rules of the individual
model items are checked. Only items that have their rules satisfied are included in the finished solution.

Since all these activities are done on pure::variants model level only, no "real" product has been created at this
point. The last step is to execute the transformation, which interprets the models and creates an actual product
variant. In pure::variants this transformation is highly configurable. In this example, source code would be copied
from afilerepository to avariant specific location, the configuration header file and some makefile settingswould
be generated. Also the generation of product variant specific UML modelsis a possible transformation. See fol-
lowing parts of the documentation for more information on the transformation process.

11

12

Chapter 4. Getting Started with pure::variants

4.1. Variant Management Perspective

The easiest way to access the variant management functionality is to use the Variant Management perspective
provided by pure::variants. If not open by default, Use Window->Open Perspective->Other and choose Variant
M anagement to open this perspectivein its default layout. The Variant Management perspective should now open

as shown below.

Figure4.1. Initial layout of the Variant M anagement Per spective

File Edit Mavigate Search Project Prolog Variant Run

& Variant Management - Weather Station Example/Variants/Berlin.vdm - Eclipse 5DK

SOL Window Help

- [<4 ® & Q- ¥ - E§|| |_§J =~ A A [T A B |Tn_| Variant Mana...
| 6 ol 2 & &
2, Variant Proje 2 =0 Berlinawvdm £2 =0 Relations | 55 Result 52 =0
& T v v 1 Fn Weather Station _ =i -
v =2 Weather Station Example 0 v ﬁ F) Sensors w (F Weather Station ~
= input v vk Languases w (F) Languages
= reports 34) English F) German
(= script ?ﬂ@ F G.erman = ~ (F) Sensors
(2 Variants v 17 © Warmnings) w [(F) Temperature Sensor
manipulation.js L1 () Gale/ Strong Wind * max =60
=] Readmebdt LR ® Heat @ warn = '43'
WS.ccfm F) Wind Speed Sensor
W5.xfm v @ HTML Weather Station
v 3 WeatherStationHTML
o sredir= "
o dir=""
2 css
Sz out 2 &rvis| T O 3 images
= 5 s .
S - Model B D @ exdoc Weather Station User Manual
Label 1 Feature Models| g Family Models & eehtrml index W
¥ ¥ (F) German = Properties 22 @Bookmarks _r;"'_ Problems | B Console =t m > =08
v 1 F
> [Languages /4 & German
v & (F)Sensors
] 3 (F) Temperature Sensor General Unique ID | ilpiLoRjAhselSCP4 ~
] .
¥ & (&) Weather Station Description | Unique Name German
] 3 (F) Wind Speed Sensor =
Rationale Visible Name | German
Class/Type | ps:feature ps:feature
Mandatory Optional Alternative Or
Variation Type
Default Selected Range: | 1 v

EEd

12:65 69 (3)

Now select the Variant Projectsview in the upper left side of the Eclipse window. Create aninitial standard project
using the context menu of this view and choose New->V ariant Project or use the File->New->Project wizard from
the main menu. The view will now show a new project with the given name.

Once the standard project has been created, three editor windowswill be opened automatically: one for the Feature
model, one for the Family Model and one for the VDM.

To create a new project using a JavaScript template use New->Variant Project from Template. For more details
about the template see the pure::variants JavaScript Extensibility Guide section JavaScript Project Template .
The existing template files are shown in a table of the opening wizard. After atemplate is selected and the name
of the project is specified it is possible to specify references projects. Finishing the wizard generates the project
like specified in the JavaScript template file.

4.2. Tooltips

By default "pure::variants' shows tooltips when hovering over features, family elements or models in the project
view. You can turn off the tooltips, by clicking the "Toggle pure::variants Tooltips" button in the toolbar.

13

Using Feature Models

Figure 4.2. Switching Tooltips on/off

E%' I:.SJ - E - - - <::I - i
a Teggle purenvariants Tooltips I ¥ Berdinvdm 52

v + 1 (F) Weather Station

o

v + U (F) Sensors
w | ¥ (F) Temperature

i @
i o
1% & Color

w] 3 (F) Wind Speed

4.3. Using Feature Models

When a new Variant project of project type Sandard is created a new Feature Model is also created with aroot
feature of the same name as the project's name followed by Features . This name can be changed using the Prop-
erties dialog of the feature. To create child features, use the New entry of the context menu of the intended parent
feature. A New Feature wizard allows a unique name, a visible name, and the type of the feature and other prop-
ertiesto be specified. All properties of afeature can be changed later using the Properties dialog.

The figure below shows a small example Feature Model for acar.

Figure4.3. A ssimple Feature Model of a car

"% Variant Management - Simple Car Example/Carxfm - Eclipse SDK
File Edit MNavigate Search Project Prolog Run 501 Window Help

[~ € KRR Q- &-[Blaw f-F-re-o-idx|Fald

. Variant Projects &2 e ¥ =0 Caraxfm & =0 Relations %

vEﬁSimp\ECarExample ~ E F) Car o Children (2}
(=8 Sample Config Space with Transformation ? F) Safety Functions F) ABS
Carxfm U iF) Brakes F) ESP
X com_copy.xsl 1 iF) GearBox w Parent (1)
2 Readmetet U iF) Engine F) Car

< >

g% Outline 52 . 6d" Visualization R Tree| (5 Table| =3 Graph| 4 Constraints
Label 2 =] Properties &2 U,]Bnnkmarks [3_ Problems

F E Brake Actuation

Fi ! Brakes

Bl car Properties are not available,

£l Engine

£ ! Front

F E Gear Box

£] Gears

F E Rear

FI4% Diesel

Fié Disc v

< >

1]
ke

— [m] ped

3

Ff 2] Yariant Ma...
E'.;.“'nResult i |08 ¥ =08

= ¥ = 0

The Outline view (lower left corner) shows configurable views of the selected Feature Model and allows fast

navigation to features by double-clicking the displayed entry.

The Properties view in the lower middle of the Eclipse window shows properties of the currently selected feature.

The Table tab of the Feature Model Editor (shown in the lower |eft part) provides atable view of the model. It lists
all featuresin atable, where editing capabilities are similar to the tree (same context menu, cell editors concept...).

It allows free selection of columns and their order.

14

Using Configuration Spaces

The Detailstab of the Feature Model Editor providesadifferent view on the current feature. Thisview usesalayout
and fields inspired by the Voler e requirements specification template to record more detail ed aspects of afeature.

The Graph tab provides a graphical representation of the Feature model. It aso supports most of the actions
available in the feature model Tree view.

The Constraints tab contains a table with all constraints defined in the model supporting full editing capabilities
for the constraints.

4.4. Using Configuration Spaces

In order to create VDMsit isfirst necessary to create Configuration Spaces. These are used to combine modelsfor
configuration purposes. The New->Configuration Space menuitem starts the New Configuration Space wizard.
Only the names of the Configuration Space and at least one Feature Model have to be specified. The initialy
created Standard project Configuration Spaceis already configured in this way.

A VDM has to be created inside the Configuration Space for each configuration. This is done using the context
menu of the Configuration Space.

The VDM Editor isused to select the desired features for the variant. This editor is also used to perform configu-
ration validation. The Evaluate Model button on the toolbar, and the Variant->Evaluate menu item, are used to
perform an immediate validation of the feature selection. The Variant->Auto Evaluate menu item enables or dis-
ables automatic validation after each selection change. The Variant-> Auto Resolve menu item enables or disables
automatic analysis and resolution of selection problems.

The problemsview (lower right part) shows problemswith the current configuration. Double clicking on aproblem
will open the related element(s) in the VDM Editor. When used for the first time, Variant Management problems

may be filtered out. To resolve this, simply click on the filter icon 3 and select Variant Management Problems
as problem item to show. For some problems the Quick fix item in the context menu of the problem may offer
options for solving the problem.

The figure below shows an example of a problem selection.

Figure4.4. VDM with a problematic selection

& Variant Management - Simple Car Example/Sample Config Space with Transformation/Sample Config Space with Transformation.vdm - Eclipse SDK - [m] X
File Edit Mavigate Search Project Prolog Bun Variant 50L Window Help

Ci-~-EH & € KK Q- - 3 Bg-r=E- - - (S s - Ff 2] Yariant Ma...
| 6 68 | B & &b & ...
2 Variant Projects &3 = G:;'; ¥ =08 *Sample Config Space with Transformation.wvdm &1 =0 Relations | 55 Result 23 =
~ 22 Simple Car Example ~ il 1 F Car _ BOA 2 L T
~ 8 Sample Config Space with Transformation v « 7 (F) Safety Functions w (B Car
Sample Config Space with Transformationvdm Jg F) ABS - £ Brakes
Carxfm & W ? F) ESP %) Engine
x| cem_copy.xsl + U (F) Brakes £/ Gear Box
]
=] Readmetd v 4 IF) Gear Box &) Safety Functions
v + 1 (F Engine
] [|4# F) Diesel
[|4 iF Gasoline
L4 > CJ
EE Outline 52 & Visualization }:ﬁ v = q @ Feature Models Family Models
Label ~ || =l Properties | LIl Bookmarks | Problems &2 ¥ =08
V] % (F) Automatic 2 errors, 0 warnings, 0 others
I

v 1 {F) Brake Actuation Description Resource Path Location Type
v 1 (F) Brakes ~ @ Errors (2 items)
il I car 43 open alternatives are 'Diesel’, 'Gasoling' Sample Confi.. /Simple Car Exampl... Diesel Variant Ma
[v] 4 iF) Disc £ 'ESP' require(s) 'ABS' Sample Confi... /Simple Car Exampl... ESP Variant Ma
+ & F) Disc
| ¥ (F) Electric
« 1 iF) Engine
vl ?) ESP
v 2 F Front v || € >

Lk

22:0 15(3)

15

Transforming Configuration Results

The Outline view shows a configurable list of features from all Feature Modelsin the Configuration Space.

4.5. Transforming Configuration Results

Thelast step in the automatic production of configured product variants is the transformation of the configuration
resultsinto the desired artifacts.

A modular, XML -based transformation engineis used to control this process (see Section 5.9, “ Variant Transfor-
mation ”). The transformation process has access to all models and additional parameters such as the input and
output paths that have been specified in the Configuration Space properties dial og.

The transformation configuration for a Configuration Space is specified in its properties dialog. The Transforma-
tion Configuration Page (Figure 4.5, “ Transformation configuration in Configuration Space Properties’) of this
dialog allows the creation and modification of transformation configurations. A default configuration for the stan-
dard transformation is created when the Configuration Space is created. See Section 6.3.1, “ Setting up a Trans-
formation ” for more information.

Figure 4.5. Transfor mation configuration in Configuration Space Properties

& Properties for Config O >
type filter text Configuration Space M
Resource

} . Define used modules for transformation
58 Configuration Spai

Run/Debug Setting

Model List Properties Configuration Wizard Evaluation Input-Output JIransformation Configurationfl

Configuration File

‘ S(PROJECT)\System\moduleconfigxml | Browse...
., Module Configuration | Description Input-Output ~ Model List
Transformations E Enable Update Support I
Default Module Instances Add
i Generate Action List -
i Execute Action List EHi
Remove
Up
Down
E Ignore transformation module errors I
% % Restore Defaults Apply
‘f?:' Apply and Close Cancel

The toolbar transformation button is used to initiate a transformation (see Figure 4.6, “ Transformation button in
Eclipsetoolbar”). If the current feature selectionisinvalid adial og is opened asking the user whether to transform

anyway.
Note

Transforming invalid configurations may yield incorrect product variants.

For more information on the XML transformation engine, see the document pure::variants XML Transformation
System Documentation .

16

Viewing and Exporting Configuration Results

The distributed examples include some sample transformations.

Figure 4.6. Transformation button in Eclipse toolbar

Eft-'| |:0-] = - - <::|v -

* i3 =g Relations | 25 Result &2
v M UFE w (F) Car
o3 v 7 F) Brakes
v I F. Engine
v 1 F! Gear Box
v I F! Safety Functions

4.6. Viewing and Exporting Configuration Results

Results of a configuration can be accessed in a number of ways. The Result view (Window->Show View->Oth-

er->Variant Management->Result) allows graphical review of the concrete models that have been derived from
the corresponding modelsin the Configuration Space.

The context menu of the Variant Projects view provides an Export operation. As shown in the figure below,
configuration results (features and components) can be exported as XML and CSV formats. The XML dataformat
is the same as for importing models but contains only the configured elements. The Export dialog asks the user
for a path and name and the export data formats for the generated files, and the model types to export.

Figure4.7. VDM export wizard

% Variant Export O X

Choose Format

Select an export type.

CSV Export
[¥] XML Export

'@,‘ < Back Next » Finish Cancel

17

Exploring Documentation and Examples

4.7. Exploring Documentation and Examples

"pure::variants' gives an access to online help and examples of pure::variants usage. Online documentation is
accessed using "Help"->"Help Contents’.

Examples can beinstalled as projectsin the user's workspace by using "File"->"New"->"Example". The available
example projectsarelisted in the dialog below theitems"Variant Management" and "V ariant Management SDK".
Each example project typically comes with a Readme.txt file that explains the concept and use of the example.

Additionally tutorials can be installed in the same way as the examples. The available tutorials are listed in the
dialog below the items "Variant Management Tutorials'. It contains the documentation itself in the pure::variants
project and optional project contents.

18

Chapter 5. Concepts

5.1. Introduction

The pure::variants Eclipse plug-in extendsthe Eclipse | DE to support the devel opment and depl oyment of software
product lines. Using pure::variants, a software product line is developed as a set of integrated Feature Models
describing the problem domain, Family Models describing the problem solution and Variant Description Models
(VDMs) specifying individual products from the product line.

Feature Models describe the products of a product linein terms of the features that are common to those products
and the features that vary between those products. Each feature in a Feature Model represents a property of a
product that will be visible to the user of that product. These models aso specify relationships between features,
for example, choices between alternative features. Feature Models are described in more detail in Section 5.3, “
Feature Models™” .

Family Models describe how the products in the product line will be assembled or generated from pre-specified
components. Each component in a Family Model represents one or more functional elements of the productsin
the product line, for example software (in the form of classes, objects, functions or variables) or documentation.
Family models are described in more detail in Section 5.4, “ Family Models™” .

In contrast to other approaches, pure::variants capturesthe Feature Model (problem domain) and the Family Model
(problem solution) separately and independently. This separation of concerns makes it simpler to address the
common problem of reusing a Feature Model or a Family Model in other projects.

A Variant Description Model (VDM) describes the set of features of a single product, i.e., aconfiguration, in the
product line. Taking a Feature Model and making choices where there is variability in the Feature Model creates
these models. VDMs are described in more detail in Section 5.5, “ Variant Description Models ™ .

pure::variants supports two modes of configurations in VDMSs: In full configuration mode, which was the only
mode availablein pure::variants 4.0, it isassumed that the set of chosen featuresiscomplete. New in pure::variants
5.0 is the partia configuration mode, which assumes that the set of chosen features is not complete and will
describe a subset of products of a product line.

The checking, whether the chosen set of featuresin a VDM isvalid, is done in an automatic Model Evaluation.
The pure::variants Model Evaluation supports both configurations modes: In full evaluation it is checked whether
the current chosen set of features fulfills all relationships of the corresponding Feature and Family Models. In
the partial evaluation, however, it is checked whether the current set of features or an extension of that fulfills all
relationships. That is, avalid set of features can be reached by eventually selecting more features. More details
about the evaluation algorithm can be found in Section 5.8, “ Variant Description Evaluation” . Also, in the next
sections, the evaluation handling for the single modeling partsis briefly described. For a better understanding this
only coversthe full evaluation. The differences of the evaluation in partial configuration mode is described more
in detail in Section 5.8.2, “ Partial Evaluation” .

Figure 5.1, “pure::variants transformation process’ gives an overview of the basic process of creating variants
with pure::variants.

19

Common Conceptsin pure::variants Models

Figure5.1. pure::variantstransformation process

Feature
Selection
Module 1
Concrete Product
Component Module 2 Variant
'1 Model Module
q Selection
Module 3
. Transformation
"= Protecol
XML based Module N
Transformator
Family Model

The product lineis built by creating Feature and Family Models. Once these model s have been created, individual

products may bebuilt by creating VDMs. Responsibility for creation of product line model sand creation of product
modelsis usually divided between different groups of users.

5.2. Common Concepts in pure::variants Models

This section describes the common, generic structure on which all models are based.

All models store elements (featuresin Feature Models, components, parts and source elementsin Family Models)
inahierarchical tree structure. Elements (Figure 5.2, “ (simplified) element metamodel”) have an associated type

and may have any number of associated attributes. An element may also have any number of associated relations.
Additionally restrictions and constraints can be assigned to an element.

Figureb5.2. (smplified) element meta model

RestrictedOiject
1 n.r Restriction
+1id : String
+name : String - B¥pression : String = true
+isPermitted() : hoolean
n.r Constraint
- expression ; String = true
1
Eiement Attribute
- - 1 0. Faor more info see
+ uniguetame : String |-, +fived “boolean=true | | Attribute Meta
+elermentClass | Sthing +type : String = psstring Madel Diagrarm
+ elemeantType : Strin
bl g + getvalued : any

1

a.x
RelationGroup 1.* Relation 1 * RelationTarget
i - Ot i Sty le—— | - targetPointer : Strin
+ relationClass : String + relationType : String 4 g
+ getTargets(: List + gefTargetd | Element

5.2.1. Model Constraints

Model constraints are used to check the integrity of the configuration (Variant Result Model) during a model
evaluation. They can be assigned to model elements for clarity only, i.e. they have no effect on the assigned

20

Element Restrictions

elements. All defined constraints haveto befulfilled for aresulting configuration to be valid. Detailed information
about using constraintsis given in Section 5.8, “ Variant Description Evaluation ” .

5.2.2. Element Restrictions

Element restrictions are used to decide if an element is part of the resulting configuration. During model evalu-
ation, an element cannot become part of a resulting configuration unless one of the restrictions defined on the
element eval uatesto true. Restrictions can not only be defined for el ements but also for element attributes, attribute
values, and relations. Detailed information about using restrictionsis given in Section 5.8, “ Variant Description
Evaluation” .

5.2.3. Element Relations

pure::variants allows arbitrary 1:n relations between model elementsto be expressed. The graphical user interface
provides access to the most commonly used relations. The extension interface allows additional relations to be
accessed.

Examples of the currently supported relations are requires, required for , conflicts, recommends, discourages,
cond_requires, and influences . Use the Relations page in the property dialog of afeature to specify feature rela-
tions. Table 9.2, “ Supported rel ations between elements (1)” documentsthe supported rel ations and their meanings.

5.2.4. Element Attributes

pure::variants uses attributes to specify additional information associated with an element. An attributeis atyped
and named model element that can represent any kind of information (according to the values alowed by the
type). An element may have any number of associated attributes. The attributes of a selected model element are
evaluated and their values calculated during the model evaluation process. A simplified version of the element
attribute meta-model is shown below.

Figure5.3. (Smplified) element attribute meta-model

RestrictedQiyect
+id : String
> + name ; Btring
+isPermitted(: boalean

£

1.* 0.x Restriction

- Bxpression [String = true

Attribute

+fiked : hoolean = true
+ type ; String = ps:string

+ getvalue : any

1 1

defaultvalue J [fived == trug] valu%List

n.r 0= _~|D__1 I [fixad == false]lﬁ

Attributevaile

+type : String = paistring

+ getlfailen - amy

AN

AttributeConstant AttributeCalculation

-value : String - language : String = pvProlog
- soript: String

+ getvalued any

+ getvaluad any

21

Element Attributes

Element attributes may be fixed (indicated with the checked F column in the GUI) or non-fixed . The difference
between a fixed and a non-fixed attribute is the location of the attribute value. The values of fixed attributes are
stored together with the model element and are considered to be part of the model. A non-fixed element attribute
valueis stored in aVDM, so the value may be different in other VDMs.

A non-fixed attribute must not, but can have values that are used by default when the element is selected and no
value has been specified in the VDM.

Guarding restrictions control the availability of attributes to the model evaluation process. If the restrictions asso-
ciated with an attribute evaluate to false , the attribute is considered to be unavailable and may not be accessed
during model evaluation.

A fixed attribute may have multiple value definitions assigned to it. A value definition may also have arestriction.
In the evaluation process the value of the attribute is that of the first value definition that has a valid restriction
(or no restriction) and successfully evaluates to true .

Instead of selecting one value from a list of possible values, it is also possible to provide attributes which
have a configurable collection of values. Each valuein the collection isavailablein avariant if the corresponding
restriction holdstrue. Two typesof collectionsareavailablefor use: Listsand Sets. List attributes mean to maintain
an order of the values and allow multiple equal entries. Set attributes instead require each value to be unique. An
order isnot ensured. To use thisfeature, either square brackets ("[]") for lists or curly brackets ("{}") for sets have
to be added after the datatype, e.g. ps:string{} , ps.boolean[] , or ps.integer[] .

Each attribute of type ps.integer or ps.float may define arange which the attribute values have to fit in. The Syntax
of avalid range is asfollows.

» A number. For ps:integer attributes decimal numbers are allowed (e.g. 5 or -2) aswell as positive hexdezimal
numbers prefixed with Ox (e.g. 0x10). For ps:float attributes float numbers are allowed in the renage definition.
(e.g. 4.56 or 2.9E2)

* Aninclusive number range (e.g. [1,*] or [0,3])

» An exclusive number range (e.g. (-5,5) or (0,3))

» A mix of inclusive and exclusive bounds (e.g. (1,23])

A set of number ranges delimited by commas (e.g. [1,2],[4,7],9)
Attribute Value Types

Thelist of value types supported in pure::variantsis defined in the pure::variants meta-model. Currently all types
except ps.integer and ps:float are treated as string types internally. However, the transformation phase and some
plug-ins may use the type information for an attribute value to provide specia formatting etc..

Thelist of typesprovided by pure::variantsisgiveninthereference sectionintable Table 9.1, “ Supported Attribute
Types’ . Users may define their own types by entering the desired type name instead of choosing one of the
predefined types.

By adding square brackets ("[]") or curly brackets ("{}") to the name of a value type alist or set type can be
specified, e.g. ps:string[] , ps:boolean[] , or ps.integer{} . A list or set type can hold alist of values of the same
data type. In contrast to normal types each of the given valuesis available in avariant if its restriction holds true
or it doesn't have arestriction.

Attribute Values

Attribute values can be constant or calculated. Calculations are performed by providing a calculation expression
instead of the constant value. The result of evaluating the calculation expression is the value of the attribute in a
variant. pure::variants uses either the built-in expression language pvSCL to express calculations.

22

Feature Models

Attributes with type ps.integer must have decimal or hexadecimal values of the following format.

‘('Ox' [0-9a-fA-F]+) | ([+]? [0-9]4) ‘

Attributes with type ps.float must have values of the following format.

‘[’r-]? [0-9]+ ("." [0-9]+)? ([eE] [+-]? [0-9]+)7

Attribute Value Calculations with pvSCL

When using pvSCL for value calculation, the following examples are agood starting point. For a detailed descrip-
tion of the pvSCL syntax, refer to Section 9.7, “ Expression Language pvSCL” .

Attribute calculation in pvSCL requires the returned value to be of the defined attribute type. Thus, to assign the
value 1 to an attribute of type ps:integer use the following calculation expression:

I |

To assign an attribute the value of another attribute & her At t ri but e of an element & her El enent , use the fol-
lowing expression:;

‘ O her El enent ->Ot her Attri bute ‘

To return the half of the product of the value of two attributes, use:

(G herEl ement->CtherAttri bute * Anot her El ement - >Anot her Attri bute) / 2

Only the value of attributes of type ps:float and ps:integer should be used in arithmetic expressions.

Use the following expression to return a string based on another attribute.

‘ "Text ' + OtherEl enent->CherAttribute + ' nore Text'

5.3. Feature Models

Feature Models are used to express commonalities and variabilities efficiently. A Feature Model capturesfeatures
and their relations . A featureis a property of the problem domain that is relevant with respect to commonalities
of, and variation between, problems from this domain. The term relevant indicates that there is a stakehol der who
is interested in an explicit representation of the given feature (property). What is relevant thus depends on the
stakeholders. Different stakeholders may describe the same problem domain using different features.

Feature relations can be used to define valid selections of combinations of features for a domain. The main rep-
resentation of these relations is a feature tree . In this tree the nodes are features and the connections between
features indicate whether they are optional , alternative or mandatory . Table 9.4, “Element variation types and
itsicons’ gives an explanation on these terms and shows how they are represented in feature diagrams.

Additional constraints can be expressed as restrictions, element relations, and/or model constraints. Possible re-
strictions could allow theinclusion of afeature only if two of three other features are selected aswell, or disallow
the inclusion of afeature if one of a specific set of featuresis selected.

Figure 5.4, “Basic structure of Feature Models’ shows the principle structure of a pure::variants Feature Model
as UML class diagram. A problem domain (ProblemDomainModel) consists of any number of Feature Models
(FeatureModel). A Feature Model has at least one feature.

23

Feature Attributes

Figure5.4. Basic structure of Feature M odels

ProblemDomainModel QM Featurehodel restricts walidity Constraint
1.7 1.* [
1 0.
describes subfeatures contains
FeatureGroup
0.
1.7
references subfeatures 1
-
Feature
1 1 describes related features
1
restricts availability
0. 0.* 0.
. restricts awailabilit . i i .
Attribute | Y Restriction restricts evaluation 44 Relation
1 0. 0. 1

5.3.1. Feature Attributes

Some features of a domain cannot be easily or efficiently expressed by requiring afixed description of the feature
and allowing only inclusion or exclusion of the feature. Although for many features this is perfectly suitable.
Feature attributes (i.e. element attributes in Feature Models) provide a way of associating arbitrary information
with afeature. This significantly increases the expressive power of Feature Models.

However, it should be noted that this expressive power could come at apricein some cases. The main drawback is
that for checking feature attribute values, the smplerequires, conflicts, recommends and discouraged statements
are insufficient. If value checks are necessary, for example to determine whether a value within a given range
conflicts with another feature, pvSCL level restrictions will be required.

5.4. Family Models

The Family Model describes the solution family in terms of software architectural elements. Figure 5.5, “Basic
structure of Family Models’ shows the basic structure of Family Models as a UML class diagram. Both models
are derived from the SolutionComponentModel class. The main difference between the two modelsisthat Family
Models contain variable elements guarded by restriction expressions. Since Concrete Component Models are
derived from Family Models and represent configured variants with resolved variabilities there are no restrictions
used in Concrete Component Models. Please note, that older designations of Family M odelsare Family Component
Model or even just Component Model. Following just Family Model will be used to designate those models with
restrictions and thus unresolved variability.

24

Structure of the Family Model

Figure5.5. Basic structure of Family Models

child companents

S

1 o.* 0.*
SolutionComponentModel (0> Component
child parts 1
1;1)\'\? ‘0..*
* 0n.*
FamilyComponentModel 0. pant C;L— SourceElement
contains
k¥
) ————
ConcreteComponenthModel —1¢ FamilyElement ¢
1 1
0.x 0.x 0.
Relation QlT Restriction Constraint
] h I |
| ! 1
| : [
| |
i Felation, Eestriction and [
e Canstraint not used in - F----- 4
ConcreteComponenttodel

5.4.1. Structure of the Family Model

The components of afamily are organized into a hierarchy that can be of any depth. A component (with its parts
and source elements) is only included in a result configuration when its parent is included and any restrictions
associated with it are fulfilled. For top-level components only their restrictions are rel evant.

Components:

A component is a named entity. Each component is hierarchically decomposed into further components or into
part elements that in turn are built from source elements .

Parts:

Parts are named and typed entities. Each part belongs to exactly one component and consists of any number of
source elements .

A part can be an element of a programming language, such as a class or an object, but it can also be any other key
element of the internal or external structure of a component, for example an interface description. pure::variants
provides anumber of predefined part types, such as ps.class, ps.object, ps:flag, ps.classalias, and ps.variable. The
Family Model isopen for extension, and so new part types may beintroduced, depending on the needs of the users.

Source Elements:

Since parts are logical elements, they need a corresponding physical representation or representations. Source
elements realise this physical representation. A source element is an unnamed but typed element. The type of a
source element is used to determine how the source code for the specified element is generated. Different types of
source elements are supported, such as ps:file that simply copies a file from one place to a specified destination.
Some source elements are more sophisticated, for example, ps.classaliasfile, which alows different classes with
different (aliases) to be used at the same place in the class hierarchy.

The actua interpretation of source elements is the responsibility of the pure::variants transformation engine. To
allow the introduction of custom source elements and generator rules, pure::variants is able to host plug-ins for
different transformation modulesthat interpret the generated Variant Result Model and produce aphysical system
representation from it.

The semantics of source element definitions are project, programming language, and/or transformation-specific.

25

Restrictionsin Family Models

An example Family Model is shown below:

Figure 5.6. Sample Family M odel

% Variant Management - Simple Car Example/Family.ccfm - Eclipse SDK - O X
File Edit Mavigate Search Project Prolog Run SQL Window Help

- C &% Q- - E‘| B = - O - - Y Ia) Variant Mana...
j *l a7 & 3}Jla\ra
o Qutli 52 &9 Visu =8 Family.ccfm &2 - =
- =
£ B =7 ~ U@ Family =
v U B3 System

Label

05

v 1 @3 Memory

[C] E psiclass: VoidEconomist v 1@ psiclass: VoidEconomist
s System 2 psifile: VoidEconomist.cc
HBY Memory ! ps:file: VoidEconomist.h
v psfile: VoidEconomist.cc v 1 @ psflag: Heap

U psfile: VoidEconomist.h o Value = ‘true’

@ ! poflag Heap U [8] psflagfile: Heap.h

[S1 ¢ psilagfile: Heap.h

Tree| (5 Table| 23 Graph| 4 Constraints
1 Properties &3 E.Il]Bookmarks ["_ Problems) E - =0
@ ps:class: VoidEconomist

General Unique ID | iUJBiqoAZdkdMsS9cr

Description | Unique Name | VoidEconomist |

Visible Mame | |

Class/Type | psipart psiaspect v|

Sk

This model exhibits a hierarchical component structure. Systemiis the top-level component, Memory its only sub
component. Inside this component are two parts, a class, and aflag. The classisrealized by two source elements.
Selecting an element of the family model will show its propertiesin the Properties view.

5.4.2. Restrictions in Family Models

A key capability that makes the Family Modelling language more powerful than other component description
languages is its support of flexible rules for the inclusion of components, parts, and source elements. This is
achieved by placing restrictions on each of these elements.

By default every element isincluded in avariant if its parent element is included, or if it has no parent element.
Restrictions specify conditions under which a configuration element may be excluded from a configuration.

It is possible to put restrictions on any element, and on element properties and relations. An arbitrary number
of restrictions are allowed. Restrictions are evaluated in the order in which they are listed. If arestriction rule
evaluatesto true, the restricted element will beincluded. That is, a set of restrictionsis evaluated as adisunction
of these restriction.

A restriction rule may contain arbitrary (pvSCL) statements. The most useful rule is <f eat ure nane/ i d) which
evaluates to true if the feature selection contains the named feature.

Examples of Restriction Rules

Including an element only if a specific feature is present

Bar

The element/attribute may beincluded only if the current feature sel ection contains the feature with identifier Bar .

26

Relationsin Family Models

Or-ing two restriction rules

Rulel

‘ not (Bar Foos) ‘

Rule2

‘ FoosBar ‘

Thisisalogica or of two statements. The element will be included if either feature Bar Foos is not in the feature
selection or FoosBar isinit.

It is also possible to merge both rules into one by using the or keyword.

Rule 1 or Rule 2

‘ not (Bar Foos) or FoosBar

5.4.3. Relations in Family Models

As for features, each element (component, part, and source element) may have relations to other elements. The
supported relations are described in Section 9.2, “Element Relation Types” .

When a configuration is checked, the configuration may be regarded asinvalid if any relations are not satisfied.

Example using ps:exclusiveProvider/ps:requestsProvider relations

In the example below, the Cosine class element is given an additional ps:.requestsProvider relation to require that
a cosine implementation must be present for a configuration to be valid. ps:exclusiveProvider relation statements
are used in two different cosine implementations. Either of which could be used in some feature configurations
(feature FixedTime and feature Equidistant). But it cannot be both implementations in the resulting system.

ps: cl ass(" Cosi ne")
Restriction: Cosine
Rel ati on: ps: request sProvi der = ' Cosi ne'
ps:file(dir = src, file = cosine_1.cc, type = inpl):
Restriction: FixedTine
Rel ati on: ps: excl usi veProvi der = ' Cosi ne'
ps:file(dir = src, file = cosine_2.cc, type = inpl):
Restriction: FixedTine and Equi di st ant
Rel ati on: ps: excl usi veProvi der = ' Cosi ne'

Example for ps:defaultProvider/ps:expansionProvider relation

In the example given above an error message would be generated if therestrictionsfor both elementswerevalid, as
it would not be known which element to include. Below, thisexampleis extended by using the ps: defaultProvider/
ps:expansionProvider relations to define a priority for deciding which of the two conflicting elements should be
included. These additional relation statements are used to mark the two cosine implementations as an expansion
point. The source element entry for cosi ne_1. cc specifies that this element should only be included if no more-
specific element can be included (ps:defaultProvider). In this example, cosi ne_2. cc will be included when
feature FixedTime and feature Equidistant are both selected, otherwise the default implementation, cosi ne_1. cc
isincluded. If the Auto Resolver for selection problems is activated then the appropriate implementation will be
included automatically, otherwise an error message will highlight the problem.

ps: cl ass(" Cosi ne")
Restriction: Cosine

Rel ati on: ps: request sProvi der = ' Cosi ne'
ps:file(dir = src, file = cosine_1.cc, type = inpl):
Restriction: FixedTine
Rel ati on: ps: excl usi veProvi der = ' Cosi ne'

27

Variant Description Models

Rel ati on: ps: defaul t Provi der = ' Cosi ne'

Rel ati on: ps: expansi onProvi der = ' Cosi ne'
ps:file(dir = src, file = cosine_2.cc, type = inpl):

Restriction: FixedTine and Equi di st ant

Rel ati on: ps: excl usi veProvi der = ' Cosi ne'

Rel ati on: ps: expansi onProvi der = ' Cosi ne'

5.5. Variant Description Models

Variant Description Models (VDM) describe the set of featuresof asingle product inthe product line. How to make
afeature selection is described in Section 7.3.4, “ Variant Description Model Editor ” . The validity of afeature
selection is determined by the pure::variants model validation described in Section 5.8, “ Variant Description
Evaluation” .

5.6. Hierarchical Variant Composition

See Section 6.2.1, “ Hierarchical Variant Composition ” for detailed information on how to create hierarchical
variants.

5.7. Inheritance of Variant Descriptions

To share common feature sel ections/exclusions between several variants pure::variants supports VDM inheritance.
This alows users to define the models for each VDM from which selections are to be inherited. Changes in the
inherited model selection will be propagated automatically to al inheriting models. Inheritance is possible across
Configuration Spaces and projects.

Thiskind of inheritance allows for example combination of partial configurations, restricting choices available to
users only to the points where the inherited model left decisions explicitly open, or use of variant configurations
in other contexts.

Thelist of modelsfrom which to inherit selectionsis defined on the properties page of the VDM (see Section 7.5.3,
“ Inheritance Page "). Models from the following locations can be inherited:

 from the same Configuration Space
« from another Configuration Space or folder of the same project
« from another Configuration Space or folder of areferenced project

Both single and multiple inheritance is supported. Single inheritance means that a VDM inherits directly from
exactly one VDM. Multiple inheritance means directly inheriting from more than one VDM. It is not supported
to directly or indirectly inherit a VDM from itself. But it is allowed to indirectly inherit a VDM more than once
(diamond inheritance).

The following selections are inherited from a base VDM:

* selections explicitly made by the user

« exclusions explicitly made by the use

* selections the base VDM has inherited from other VDMs

Additionally attribute values defined in ainherited VDM are inherited if the corresponding selection is inherited.
The applicable rules for the inheritance are listed in Section 5.7.1, “Inheritance Rules’ .

pure::variants 5 introduces theindependent inheritance of attributesvaluesand selections. Now, aVDM can supply
only an attribute value but till leave inheriting VDM sthe choice to select or exclude the attribute's parent element.
Likewise, aVDM can supply only an element selection but still leave inheriting V DM sthe choice to supply values
for the element’s attributes. The independent inheritance mode is active for all projects created with pure::variant
5 and later. Additionally pure::variants 5 projects inherit constraints defined in a vdm. Older projects have to be
converted to version 5 in order to use the independent inheritance (See Section 6.18, “ Convert a pure::variants 4
project into a pure::variants 5 project”).

28

Inheritance Rules

Inherited selections can not be changed directly. To change an inherited selection, the original selection in the
inherited VDM hasto be changed. Particularly if aselection isinherited that has a non-fixed attribute and no value
isgiven in theinherited VDM, it is not possible to set avalue for this attribute in the inheriting VDM. The value
can only be set in the inherited VDM.

If both the inherited and the inheriting VDM are open, changes on theinherited VDM areimmediately propagated
to the inheriting VDM. This propagation follows the rules described in Section 5.7.1, “ Inheritance Rules” .

If thelist of inherited VDMsfor aVDM is changed, all inheriting VDMs have to be closed before.

5.7.1. Inheritance Rules
The following rules apply to the VDM inheritance:

1. If amodel element is user selected in one inherited VDM it must not be user excluded in another. Otherwise
itisan error and the conflicting selection isignored.

2. There must be no conflicting values for the same attribute in different VDMs of the inheritance hierarchy.
Otherwiseit is an error and the conflicting attribute value isignored.

3. Aninherited VDM has to exist in the current or in any of the referenced projects. Otherwise it is an error and
the not existing VDM isignored.

4. A VDM must not inherit itself, neither direct nor indirect. Otherwiseit is an error.

5.8. Variant Description Evaluation

Inthe context of pure::variants, model evaluation isthe activity of verifying that aVDM complieswith the feature
and family modelsit isrelated to. Understanding this evaluation processisthe key to a successful use of relations,
restrictions, and constraints.

5.8.1. Evaluation Algorithm

Theinput of the evaluation is a set of feature and family models and a variant description model defining the user
selectiong/exclusions and attribute value assignments. If available, also automatic selections/exclusions created
by auto resolver and extended auto resolver runs (see Section 6.1.4, “ Automatic Resolving of Selection Problems
" and Section 6.1.5, “ Automatic Selection ") are used.

Anoutlineof theevaluation algorithmisgivenin pseudo codein Figure5.7, “Model Evaluation Algorithm (Pseudo
Code)” .

Figure5.7. Model Evaluation Algorithm (Pseudo Code)

nodel Eval uati on()

{

pr opagat eSel ect i onsAndExcl usi ons() ;
foreach(current in nodel Ranks())
{
sel ect AndSt or eFr onfeat ur eModel s(
get Feat Model sByRank(current));
sel ect AndSt or eFr onfami | yModel s(
get Famvbdel sByRank(current), cl ass(' ps:famly'));
sel ect AndSt or eFr onfam | yModel s(
get FamVbdel sByRank(current), cl ass(' ps: conmponent'));
sel ect AndSt or eFr onfam | yModel s(
get FamVbdel sByRank(current), cl ass(' ps: part'));
sel ect AndSt or eFr onfam | yModel s(
get FamVbdel sByRank(current), cl ass(' ps: source'));

checkFeat ureRestri cti ons(get Sel ect edFeatures());
checkRel ati ons();

checkConstraints();

cal cul at eAttri but eVal uesFor Resul t () ;

29

Evaluation Algorithm

In the first step, the existing selections and exclusions are collected and used to find more trivial, logically im-
perative selections and exclusions. New selections are added by propagating existing selections up-tree, since a
selected element always require a sel ected parent element. Analogously, new exclusions are added by propagating
existing exclusions down-tree. Additionally, new exclusions are also added for all unselected aternatives, if at
least one alternative is selected.

In the next step, the feature and family model trees are traversed to collect and add more sel ections and exclusions
based on mandatory relations and based on the element's default-sel ection state (see Section 6.1.3, “ Default Ele-
ment Selection State ") in combination with restrictions. The generally applied rules are: @) If a parent element
is selected, any unselected mandatory child element will also be selected. b) If a parent element is selected, an
unselected child element with a set default-selection state will also be selected if the child element has either no
restriction or at least one restriction, which evaluatesto true. If however all restrictions evaluate to false, the child
element and all its descendant elements will be excluded. Consequently, restrictions on elements, which are not
selected will not be evaluated at all.

Since the evaluation of restrictions usually access the selection state of other elements, the order of adding and
requesting selections need to be considered. Therefore, the traversal of the feature and family model treesis dis-
tributed by so called ranks. On the higher level, model ranks define an order of whole sets of feature and family
models. Models with a higher rank (with alower rank index number) will be traversed first. On the lower leve,
for a set of models with the same model rank, the order of traversal is defined by the element class. The elements
of afeature modél (i.e., the features) are all of class feature and they are traversed first. The elements of afamily
model are of one of four classes, which are traversed in the following order: &) family (the class of the family
model root elements), b) component, ¢) part, and d) source.

So, the traversal is done in the following way for each model rank from higher to lower ranks: First the feature
models of the current model rank aretraversed in depth-first order starting with the root elements. During traversal,
selections and exclusions are collected and added according to the rules defined above. The traversal stops at
features, which are not selected and also cannot be selected by the mentioned rules. As soon as the traversal of
all feature models of the current model rank is done, the collected and added selections will become visible for
the evaluation of restrictions.

After the feature models, the family models with the current rank are traversed, beginning with the elements of the
family class, followed by the component, part and source classes. A depth-first traversal is done for all elements
of the same class, where again selections and exclusions are collected and added. The traversal stops again at not
selectable elements. It also stops on elements of the next class. These elements are used later as a starting point for
theelement traversal of that class. After thetraversal of the elements of each class, the new selectionsbecome again
visible. So restrictions can always access safely the element selection states of previous classes and model ranks.

Warning

In restrictions, directly or indirectly accessing the selection state of features or elements of the same
or lower class or of alower model rank will always result in Boolean false. Make sure that element
restrictions are "safe". That is, they do not contain direct or indirect references to elements for which the
selection is hot yet calcul ated.

After the traversal of the feature and family models is done, the selections are checked against the feature and
family models. First for all selected features and elements the restrictions are checked. Errors are raised for each
element with restrictions evaluating to false. Then tree structure relations (i.e., alternatives and or-groups) and
element relations are checked. If element relations are restricted, they only need to be fulfilled, if at least one
restriction evaluates to true. Again errors are raised for not fulfilled relations. The check of all constraintsin all
feature and family models will be done after that.

In the last step the values of all attributes of selected features or elements will be determined. This will also do
the evaluation of vaue restrictions and of calculations. Although values of attributes of unselected features and
elements are not part of the evaluation result, they can be accessed in restrictions, constraints and calculations. If
an attribute value has no value in theresult or if no value can be calculated, an error will be raised for this attribute.

30

Partial Evaluation

5.8.2. Partial Evaluation

As dready mentioned in the introduction of this concepts chapter, the Model Evaluation supports the two con-
figuration modes: In the full configuration mode, it is assumed, that the set of selected features and elementsis
complete. So al features, which are not selected, are handled as excluded features. All constraints, relations, and
restrictions are evaluated accordingly to this definition. It is also expected that all attributes of selected elements
have avaue. Therefore, missing values are handled as a configuration error.

In partial configuration mode, the set of selected features and elements needs not to be complete, i.e., it ispartial.
The currently unselected features and elements are handled as open decisions, which will be made later, e.g. in
an inherited VDM. So for the evaluation there is a difference between excluded and still unselected features and
elements. During evaluation any propositional checks are done in three-valued logic with the values true (for a
selection), false (for an exclusion), and open (for an unselection).

Inresult, tree structure relations (e.g. alternatives), element relations, constraints, and restrictions can also evaluate
totrue, false, or open . Only tree structurerel ations, element relations, and constraints, which eval uate to false will
create an error. So, no error means that the dependency is either fulfilled or potentialy fulfillable. For arestriction
set on a feature or element, only an error is created, if that feature or element is selected and all its restrictions
evaluate to false . A relation with a set of restrictionswill only be checked during evaluation, if at least one of the
restrictionsisevaluating to true, since otherwise the rel ation does not need to hold or it is open whether therelation
needsto hold or not. Attributeswith aset of restrictionsexist intheresult, except if al restrictionsevaluatetofalse.

Infull configuration mode, during traversal of the tree elementsonly restrictions a) on selected elements, and b) on
unsel ected elementswith a set default-sel ection state that are children of asel ected element are evaluated. In partial
configuration mode however, to create more exclusions, restrictions on all unselected elements are evaluated. If
all restrictions on an unselected element evaluates to false, this element will be excluded. The default-selection
stateis not relevant in partial configuration mode. So, new selections will not be created based on that state.

Theresult value of an attribute can al so be open depending on preset val ues, restrictions, and cal cul ation evaluation
results. Following rules apply for determining the result value of attributesif the values are set or not:

A fixed attribute with no value creates an error (as for full configurations).
A fixed attribute with a non-restricted value resultsin that value (as for full configurations).
» A non-fixed attribute with no value results in an open value, since the user can set this value later on.

» A non-fixed attribute with a default value result in an open value, since the user can overwrite the default value
later on.

If the attribute values of an attribute have restrictions, the result of that attribute is determined by the evaluation
result of each restriction set. So an attribute value can exist (true), can not exist (false), or can potentially exist
(open). An attribute value without restrictions can be equated with an attibute value with a restriction always
evaluating to true . So the next statements also apply if some or all attributes does not have any restrictions.

Infull configuration mode the result value of afixed non-collection attribute with many (restricted) attribute values
is determined by finding the first attribute value with a restriction set evaluating to true . All previous attribute
valueswith afalse restriction will beignored. If no attribute value remains, the attribute has no value and an error
will be created for that attribute.

In partial configuration mode, the open restrictions need to be also considered. So the result depends on the first
attribute value, whose restriction set does not evaluate to false . If the restriction set of the first of such an attribute
value evaluates to true , this value will be the result value of the attribute. However, if it evaluates to open , the
result value will be also open , sinceit is unknown if that attribute value is the right one, or one of its successors.
Asfor full configuration mode, if no attribute value remains, an error will be created.

For fixed collection attributes, i.e, for list and set attributes, in full configuration mode the result value collection
contains all attribute values, whose restriction set evaluatesto true . In partial configuration mode, however, some
attribute valuesonly potentially exists. So theresulting collection val ue could contain optional collection members.
If that isthe case, soif at |east one attribute value has an open restriction set, the resulting collection will be open .

31

Variant Transformation

Each attribute value is a constant or a calculation. A calculation itself can also evaluate to an open value. More
information about how pvSCL expressions will be evaluated in partial configuration mode is described in Sec-
tion 9.7, “Expression Language pvSCL" .

5.9. Variant Transformation

pure::variants supports a user-specified generation of product variants using an XML -based transformation com-
ponent. Input to this transformation processis an XML representation of the Variant Result Model. Transforma-
tion modules are bound to nodes of the XML document according to a user-specified module configuration. These
processing modules encapsul ate the actions to be performed on a matching node in the XML document.

A set of generic modulesis supplied with pure::variants, e.g. amodulefor collecting and executing transformation
actions. Thelist of available transformation depends on the pure::variants product and installed extensions.

The user may create custom modules and integrate these using the pure::variants API.

Thetransformation module configuration is part of the Configuration Space properties (see Section 6.3.1, “ Setting
up a Transformation ”).

5.9.1. The Transformation Process

The transformation process works by traversing XML document tree. Each node visited during this traversal is
checked to see whether any processing modules should be executed on it. If no module has to be executed, then
the node is skipped. Otherwise the actions of each module are performed on the node. Further modules executed
on the node can process not only the node itself but also the results produced by previously invoked modules.

The processing modules to be executed are defined in a module configuration file. This file lists the applicable
modules and includes configuration information for each module such as the types of nodes on which a module
is to be invoked. The transformation engine evaluates this configuration information before the transformation
process is started.

Figure5.8. XML Transformer

XML

Module
Config

The transformation engine initializes the available modules before any module is invoked on a node of the XML
document tree. Thiscould, for instance, give adatabase modul e the opportunity to connect to adatabase. Thetrans-
formation engine aso informs each module when traversal of the XML document tree is finished. The database
module could now disconnect.

Before amodule isinvoked on anodeit is queried as to whether it is ready to run on the node. The module must
answer this query referring only on its own internal state.

Part of the SDK is a separately distributed manual contains further information about the XML transformer. This
manual shows how the built-in modules are used and how you can create and integrate your own modules.

5.9.2. Variant Result Models

For each Feature and Family Model of the Configuration Space a concrete variant is calculated during the mod-
el evaluation, collected in the so-called Variant Result Model. In full configuration mode, the concrete model

32

Variant Update

variants contain only the selected features and elements. Successfully evaluated restrictions and constraints are
removed and attribute value calculations are replaced by their calculated values. In partial configuration mode,
the concrete model variants contain both the selected and open features and elements. Only the excluded features
and elements are removed. In case of that single calculation results are still open, the concrete model will still
contain these calculations. Only the calculations which evaluate in a non-open value will be replaced. Also in
case of open restrictions on attribute values, the concrete model variants can contain more attribute values than
in full configuration mode.

The type of the feature and family models is changed to signal that these models are concrete variants (see Ta-
ble 5.1, “Mapping between input and concrete model types’).

Table5.1. Mapping between input and concrete model types

Input Model Type Concrete Model Type
ps.fm (Feature Model) ps.cfm (Concrete Feature Model)
ps:ccfm (Family Model) ps.ccm (Concrete Family Model)
ps:vdm (Variant Description Model) ps:vdm (Variant Description Mod-
el, identical to the input model)

The Variant Result Model contains additional variant information and is the input of the pure::variants transfor-
mation. It has the following structure.

<vari ant >

<l ocat i oni nf 0>
<nodel m d="variant nodel |D'>variant nbdel URL</nodel >
<nodel m d="feature nodel |D'>feature nbdel URL</nodel >
<nodel mid="fam |y nodel |D'>fanm |y nodel URL</nodel >

</| ocat i oni nf 0>

<cm consul nodel s
xm ns: cme" ht t p: / / www. pur e- syst ems. conf consul / nodel " >
<cm consul nodel cm i d="variant nodel |D'

cmtype="ps:vdn cmversion="1.5">

</ cm consul nodel >
<cm consul nodel cm i d="feature nodel |D'
cmtype="ps:cfnm cmversion="1.5">

</ cm consul nodel >
<cm consul nodel cmid="fam |y nodel |D"
cmtype="ps:ccn cmversion="1.5">

</ cm consul nodel >
</ cm consul nodel s>
</vari ant >

The I ocat i oni nf o subtree of this XML structure lists the URLs of the models used in the stored variant in-
cluding the variant model. If the stored Variant Result Model is used for inout to a evaluation or transfor-
mation pure::variants tries to open the input models from the stored locations to complete the variant. The
cm consul model s subtree contains alist of all the concrete models.

Tip

A copy of this XML structure can be saved using the "Save Result to File" button that is shown in the
tool bar of avariant description model or automatically as part of atransformation result. See the section
called “Input-Output Page” for more information.

5.10. Variant Update

The Variant Update allows to merge custom changes made in a variant with a newly transformed version of that
variant. Sometimes changes for a specific product need to be done after a variant was transformed. When the
variant gets transformed again these changes need to be merged in order to keep both pieces of information. To do

33

File based Update

this, certain information have to be gathered in order to keep track of who made changes where, and what needsto
be merged back into the newly generated variant assets. For that purpose, pure::variants stores each transformation
output in an internal repository.

With thisinformation pure::variants is able to update changes to the latest transformation, aswell asto the current
customer-specific variant, by using a three-way compare. The graphic below shows this process.

Figure5.9. General Update functionality

Mixing Variant and PL Evolution - Solution

Product Line Assets

Product Line Assets

Product Line Asset
Modifications

150% Data TO

150% Data T1

Variant A
Latest Reference

p::v Internal Repository for Variant A

Variant A
Ancestor Reference
———> Compare & Merge
Working Copy Repository for Variant A

Variant A TO = Variant A TO++ Variant A T1

. WorkingCopy "remtModfieations - workingCopy Working Copy

Depending on the tool, our connector either supports afile based update or atool specific approach.

5.10.1. File based Update

If you activate the update functionality in your transformation module (see the section called “ Transformation
Configuration Page”), three folders will be generated into your output folder.

Figure5.10. Folder Structure

v = Simple Car Example
= input
v = output
w [Sample Config Space with Transformation
== ancestor
= latest
= work

b copyxml
(% Sample Config Space with Transformation

Working copy (work) : avariant created by the transformation that may be edited by the user.
Latest: avariant created by the transformation, which reflects the latest state of the product line.

Ancestor : avariant created by the transformation, which is the common ancestor of both working copy and latest
reference.

After all changes have been done and the new version of the variant is generated from the product line, you can
merge these changes into your local working copy as follows: Open the context menu of the variant folder you
want to update. In the refactor section of the menu, you will find Variant Update , where Merge Variant ... is
located. A three-way compare opens, showing the differences between thefiles of the respective subfol ders, where
you can choose which part to keep and which to take over from the product line.

File based Update

k.S

C. &

31

jpare with Trancfnmmatinn

New

Open
Open in Matrix

Delete

Refactor
Variant Update

Import...
Export...

Refresh

Validate
Synchronize Models...

w

F) Gear Box
F) Engine

Mark Variant as Merged
Merge Variant ...

New

Open

&

Open in Matrix

Delete

X

Refactor
Variant Update

Import...

L E =

Export...
Refresh

Validate
|?_| Synchronize Models...

-

Mark Variant as Merged
Merge Variant ...

When all changes are applied and saved, you can mark the variant as merged, viaUpdate Variant -> Mark Variant
asMerged . Thiswill set the "latest" folder as new ancestor and the project is prepared for the next version of the
product line to be transformed, so the process can continue.

35

36

Chapter 6. Tasks

6.1. Evaluating Variant Descriptions

In pure:variants a variant description, i.e. the selection of features in a VDM, can be evaluated and verified
using the Model Evaluation. See Section 5.8, “ Variant Description Evaluation ” for a detailed description of the
evaluation process.

A variant description is evaluated by opening the corresponding VDM in the VDM Editor and clicking on button

3" in the Eclipse tool bar. Detected selection problems are shown as problem markers on the right side of the editor
window and in the Problems View. On the |eft side of the editor window only those markers are shown that point
to problems in the currently visible part of the model. Clicking on these markers may open a list with fixes for
the corresponding problem.

Figure 6.1. VDM Editor with Outline, Result, Problems, and Attributes View

&£ Variant Managerment - Simple Car Example/Sample Config Space with Transformation/Sample Config Space with Transformationwdm .. — [m] >
File Edit Mavigate Search Project Prolog Run Variant SQL Window Help
[C ®® Q- - E%l| |_§J -=E - - A [T A B l_n;l Variant Mana...
o0 Sl | 2 & [&' sove
0T Outline 82 & Visualizatio| = O || @ Sample Config Space with Transformation.vdm &2 =08 Relati |5 Result 22 =8
=
it 7| veieda - AR
Label v v ?QFQ Safety Functions e
? [F) ABS
] 3 (F) Automatic v [? (F) ESP = £ Erak‘:es
il - . Fr Engine
v 4 [F)Brake Actuation @ Requires: "ABS" Fi Gear Box
v 1 (FBrak]
H rakes v & [F) Brakes ~ (F) Safety Functions
v & (F)Car v U (F) Gear Box £ ESP
'] 4 () Diisc v « U (F) Engine
v @ (F) Disc _| 4% F) Diesel
| 4 (F) Electric [|4# (F) Gasoline
v 1iF Engine =
7 @Esp @ Feature Models Family Models
v E F. Front
v 1 (F) Gear Box = Properties | Ll Bookmarks [(5.i Problems &2 ¥ = O Attributes &2 =0
7 .
W ;< F) Gears Zerrors,Dwarmngs,[)otheri o ;.;:;) -
v F ipti
; Manual Description Resource Attribute Value
v 1 (F)Rear v @ Errors (2 items) =] Gears
« § (F) Safety Functions 41 open alternatives are 'Diesel’, 'Gasoline’ Sample Confi... p— -
43 'ESP' require(s) 'ABS Sample Confi.. oun
< L K > < >
o 22:0 15 (5)

Automatic evaluation of the variant description is enabled by pressing button “ inthe Eclipse toolbar. This will
cause an evaluation of the element selection each time it is changed.

If the variant description is valid, then the result of the evaluation are the concrete variants of the modelsin the
Configuration Space shown in the Result View (see Section 7.4.8, “ Result View "). The concrete variants of the

models are collected in the Variant Result Model, that can be saved to an XML file using the button = . Saved
Variant Result Models can be opened with the VRM Editor. See Section 5.9.2, “ Variant Result Models ” for
more information about Variant Result Models, and Section 7.3.5, “ Variant Result Model Editor ” for adetailed
description of the VRM Editor.

6.1.1. Configuring the Evaluation

Workspace-specific settings

The model evaluation is configured on the Model Evaluation tab of the Variant Management->Model Handling
preferences page (menu Window-> Preferences , see Figure 6.2, “Model Evaluation Preferences Page”).

37

Configuring the Evaluation

Figure 6.2. Model Evaluation Preferences Page

’:‘D_I Preferences O x
type filter text Model Handling =l -

General -

Ant General | Model Evaluation | Auto Resolver

Data Management Evaluation

Hel . .

P ., [Timeout for checking a feature selection

Install/Update

Java Timeout in seconds | 120 |

JavaSeript Limited feature selection checking iterations

Plug-in Devel t . . .
Hg-in UevElopmen Maximal number of iterations | 32 |

Report Design

Run/Debug Auto Evaluation

Team

Validation Model evaluation delay (ms): | 500 |

~ Variant Management

Restart model evaluation after mouse move
Connector Preferences

Image Export
Known Servers Ignored Attributes
Metrics Element attributes to be ignored by the model evaluation
Madel Handling ps:Source New
Medel Validation ps:ChangedBy
puresvariants License F'S:Eha?:ngd .
Relation Indexer pe-reats
Visualization Up
EML
Down
Restore Defaults Apply

':3:' Il_. B3 Apply and Close Cancel

When the "Evaluate Model" button is clicked in the VDM Editor, the current feature selection is analysed to
find and optionally resolve conflicting selections, unresolved dependencies, and open alternatives. Additionally
the implicitly selected and mapped features are computed. For this analysis a timeout can be set. It defaults to
two minutes which should be long enough even for big configuration spaces. The timeout can be disabled by
unchecking the "Timeout for checking a feature selection” check box.

Finding mapped features is an iterative process. Mapped features can cause other features to be mapped and thus
included into the selection. The default maximal number of iterations is 32. Depending on the complexity of the
dependencies between the mapped features it may be necessary to increase this value. In this case pure::variants
will show adiaog saying that the maximal number of iterations was reached. The iterations limit can be disabled
by unchecking the "Limited feature mapping iterations" check box.

If the automatic model evaluation is enabled, changing the current feature selection in the VDM Editor causes
an automatic evaluation of the Configuration Space. The evaluation processis not started immediately but after a
short delay. The default is 500 milliseconds. With the "Restart model evaluation after mouse move" switch it is
configured whether the timer for the evaluation delay isreset if the user moves the mouse.

It is possible to define alist of element attributes that are ignored during the model evaluation.
Note

For listed attributes it is not possible to access them in restrictions and calculations during the model
evaluation process. These attributes a so do not become part of the Variant Result Modél, i.e. the concrete
models of the variant.

The default list of ignored attributes contains the administrative attributes ps: Source, ps:Changed, ps:ChangedBy,
and ps:Created.

38

Configuring the Evaluation

Configuration-Space-specific settings

For each configuration space, the strictness of the eval uation of the contained variant description modelsregarding
problematic modeling constructs can be configured (see Figure 6.3, “ Configuration Space Evaluation Settings

Page”).

Figure 6.3. Configuration Space Evaluation Settings Page

& Properties for Variants

type filter text

Resource
B8 Configuration Space
Run/Debug Settings

sy
()]

Configuration Space - v -
Set the evaluation settings for Variant Models

Madel List Configuration Wizard Input-Output Transformation Canfiguration

The strictness of the evaluation can be configured in order to detect problematic modeling constructs. It is recommended to use the most
strict settings unless there are good arguments against that, e.g. legacy models,

The settings apply to all VDMs of this configuration space during evaluation and transformation.
Vielating one-definition rule for user functions in pvSCL Ee e
Comparing values of incompatible types in pvSCL
Referencing non-existing models or elernents in relations or pvSCL Off V

Relation types to be considered in reference check
Using ambiguous element references in pvSCL Off V
Resolving invalid default-selected alternatives

Assigning or accessing incempatible attribute values Off ~

Error ~
Built-in only ~

Off with warning ~

Restore Defaults

Apply and Close

Apply

Cancel

The following problematic constructs are checked and for each of them the complain level is configurable. How-
ever, itisrecommended to use the most strict settingsif possible. One example for an exception of thisrecommen-
dation would be the enabling of current pure::variants versions to use also legacy or baseline models containing

such constructs.

Violating one-definition rule for us-
er functions in pvSCL

Comparing values of incompatible
typesin pvSCL

Referencing non-existing models or
elementsin relations or pvSCL

Relation types to be considered in
reference check

Using ambiguous element refer-
encesin pvSCL

Resolving invalid default-selected
alternatives

pvSCL user function definitions have to follow the one-definition rule
(ODR). So, multiple definitions of pvSCL functions with the same signa-
ture, i.e., same name and same number of arguments, violate thisrule. For
the user it is usually unclear, which of these multiple function implemen-
tations will be called in which case. Hence, to ensure the adherence to the
ODR, the evaluation checks for this violation.

Comparing values of incompatible typesin pvSCL, e.g., of values of type
string and number, involves an implicit conversion of each value into a
string followed by a string comparison. This could lead to potentially un-
expected results for the user.

Referencing non-existing models or el ementsis acommon modeling issue.
Especially, references to non-existing elements are interpreted as unsel ect-
ed by default. So they are not easy to find.

The scope of the non-existing references check is configurable; With op-
tion All all relation types are checked, whereas with option Built-in only the
check is done for pure:variants' predefined relation types only (see Sec-
tion 9.2, “Element Relation Types”).

Using several models in a configuration space can result in non-unique el-
ement names. Referencing such elements by their name is ambiguous and
can lead to unexpected results, since the first occurence is used by default.

Multiple default-selected non-restricted alternatives result in an invalid
configuration. In rare circumstances, this problem can be automatically re-

39

Setting the VDM Configuration Mode

solved, but the automatic resol ution could al so lead to potentially unexpect-
ed results, e.g. invalid variants athough a valid solution exists.

Assigning or accessing incompati- User-defined or calculated attribute values have to match the attribute's

ble attribute values type. Vaues with awrong type can be implicitly converted to the attribute
type in some cases, e.g. integer to float, number to string, and element to
its Boolean selection state. However, in many cases thisis not possible or
not wanted.

6.1.2. Setting the VDM Configuration Mode
For pure::variant version 5 projects, the configuration mode can be set for each VDM separately during creation

of aVDM or later at any time in the Configuration Mode page of the VDM's Properties dialog (see Figure 6.4,
“Variant Model Configuration Mode Page”).

Figure 6.4. Variant Model Configuration Mode Page

'.g‘ Properties for Ankara.vdm O =
type filter text Configuration Mode =1 v v
Resource) .
E“’J Configuration Mode Configuration Mode
E"’J General Properties ® Full Configuration

lT"—‘ Inheritance In this mode, the user has to define a complete variant configuration for a single variant. The

|T“_| Run/Debug Settings evaluation checks whether the variant configuration is valid. Missing selections, which are
needed to get a valid configuration, are reported as errors. Unselected features/elements will be
handled as not selected. Running a transformation using such a variant configuration will create
a single artifact variant.

O %) Partial Configuration

In this mode, the user can define an incomplete (i.e,, partial) variant configuration, which still
contains open decisions. The evaluation checks whether the configuration can still be
completed. So, still missing selections, which are needed to get a complete valid configuration,
are reported as warnings. Unselected features/elements will be handled as open decisions.
Running a transformation using such a variant configuration will create a 120% artifact variant,
which can still contain undecided variability.

P

6.1.3. Default Element Selection State

Each feature and element has a default selection state defined in Feature and Family Model. Normally Family
Model elements and mandatory features are created with the state "on". All other Feature Model elements are
created with the state "of f". Except for mandatory features and elements, the default selection state can be changed
by the user.

In full configuration mode, a feature or element with the default selection state "on" is selected automatically if
the parent element is selected. To deselect this element either the parent has to be deselected or the element itself
has to be excluded by the user or the auto resolver.

In partial configuration mode, the default selection state is ignored, since this state controls the default handling
of unselected elements. So, unsel ected elements stay open independent of the default selection state.

6.1.4. Automatic Resolving of Selection Problems

If afeature selection is evaluated to be invalid, selection problems will occur. Such selection problems are for
instance failed relations, constraints or restrictions. Certain selection problems are eligible to be resolved automat-
ically. For example, anot yet selected feature that is required by arelation can be selected automatically.

40

Automatic Selection

The pure::variants auto resolver component provides a set of heuristics to resolve failed relations, features selec-
tion ranges and basic propositional constraints. They are applied only in full configuration mode. In partial con-
figuration mode the auto resolver is not executed.

Note

The auto resolver does not change the selection state of user selected or excluded features. It only adds
new selections or exclusions.

As shown in Figure 6.5, “ Automatically Resolved Feature Selections’ , auto resolving for a VDM is enabled by
clicking button & in the tool bar.

Figure 6.5. Automatically Resolved Feature Selections

%“u‘ariantManagement- Simple Car Example/Sample Config Space with Transformation/5ample Confi.. — O X

File Edit Mavigate Search Project Prelog Run Variant SOL Window Help

CH~- C R Q- ¥ - E§|| r?] rE - iz} |Tn_| Variant Mana...
- = = - |6’0“\°{>Ld7—‘v_;| st aJJava
?ﬁ Variant Projects &2 =8 Sample Config Space with Transfermation.vdm 22 =8
=
1
:,é:b <)==’=> = w vl ¥ l'; Car .]
v 1= Simple Car Example A v v '; Safety Functions -
1)
& input ﬂ:? F) ABS =
v = output v [17 (F ESP
@ Requires: "ABS"

~ [= Sample Config Space with

== ancestor v « U (F) Brakes

= latest v + 1 (F) Brake Actuation
= work | ¥ (F) Electric

k3 copy.xml []4%¥ (F) Electrohydraulic

w [Sample Config Space with Tra L14 () Hydraulic

]
Sample Config Space with ¥ & [F) Rear
Carxfm v E F) Front
I]

X| ccm_copy.xsl v ﬁ F Gear Box

Family.ccfm ¥ 1 [F) Engine

=1 Readme tt v i
¢ > Feature Models Family Models
o* 22:0 166)

2 Eer s BHE 2 B

6.1.5. Automatic Selection

The auto resolver does only resolve selection problemslocally, i.e., it considers only asinglerelation or constraint.
It cannot consider the potentially hidden dependencies of the complete set of the evaluated feature and family
models.

The pure::variants extended auto resolving component therefore uses an approach to add feature selections and
exclusions, which are logically mandatory based on the whole set of feature and family models and the user
selections and exclusions. It will run before evaluation, so the evaluation already checks these new automatic
selections. The extended auto resolving is executed both in full and partial configuration mode. For both modes
the behavior isequal.

The extended auto resolving uses a SAT solver based approach. It coversthe propositional part of the models, i.e.,
the feature and family model tree structure with selection ranges, al built-in relations, and the propositional parts
of constraints and restrictions in pvSCL, like Boolean operations. It does not cover attributes with their values
and parts of pvSCL expressions, which are not propositional, like comparisons, arithmetical operations and model
element traversal. However, non-propositional expressions do not influence the reliability of the result. The not
useable parts are simply mapped to open Boolean variables.

Considering the already done user selections and exclusions, the extended auto resolving will first check, if the
propositional part issatisfiable, i.e., aconfiguration can be reached by adding more selections, which at least fulfills
all propositional dependencies of the models. If the satisfiability is given, for each unselected feature and element
it will be determined, whether it has to be selected or excluded to fulfill all the propositional rules. However, if

41

Configuring the Auto Resolver

the models also contain non-propositional parts, it is still possible that a configuration, which fulfills all model
dependencies can never be reached.

If the propositional part of the modelsis not satisfiable, i.e., thereisaconflict in the models or the user selections
or exclusions, the extended auto resolving cannot determine any new selections and exclusions. Then also the
complete model dependencies including the non-propositional parts, cannot be fulfilled.

6.1.6. Configuring the Auto Resolver

Both auto resolving components are configured on the Auto Resolver tab of the Variant Management->Model
Handling preferences page (menu Window-> Preferences, see Figure 6.6, “Auto Resolver Preferences Page”).

Figure 6.6. Auto Resolver Preferences Page

':‘"-‘_I Preferences 0 %
type filter text Model Handling G w
General
Ant General Maodel Evaluation | Aute Resolver
Data Management Auto Resolving
Help

’ [J Auto resolve weak relations like hard relations
Install/Update

Java
JavaScript Remove auto resclved features before aute reselving

[Auto resolve psiconflicts relations

Plug-in Development

Report Design Extended Auto Resolving

Run/Debug Enable extended auto reschving for feature moedels
Team Enable extended auto reschving for family models
Validaticn

+ Variant Management Maximal number of elements | 100000

Connector Preferences
Image Export

Known Servers
Metrics

Model Handling
Model Validation
purenvariants License
Relation Indexer

Yisualization
XML
Restore Defaults Apply
'/?j' I_‘. =3 Apply and Close Cancel

Usually weak relation types like ps:recommends and ps:discourages are not considered by the auto resolver.
Checking box "Auto resolve weak relations..." causes the auto resolver to handle weak relations like hard re-
lations. In detail, ps:recommends is handled like ps:requires , i.e. select the required feature if possible. And
ps:discourages is handled like ps:conflicts , i.e. exclude conflicting features if they were automatically selected
by a ps:recommends relation.

Conflicts usually are not automatically resolved. Checking box "Auto resolve ps:conflicts relations" enables a
special auto resolving for conflicts. If the conflicting feature was automatically selected due to a ps:recommends
relation, then this feature becomes automatically excluded.

To get a clean selection before evaluating a moddl, i.e. a selection only containing user decisions, "Remove auto
resolved features..." has to be enabled.

The extended auto resol ver can be enabled for Feature and Family M odel s separately. Depending on the compl exity
of the Input Models, measured by counting the number of variation points, the extended auto resolver may exceed
the memory and time limits of the model evaluation component of pure::variants. In this case the extended auto
resolver aborts. To solve this problem following actions may be tried:

42

Reuse of Variant Descriptions

Disable the extended auto resolver for Family Models. In most of the cases extended auto resolving is not
interesting for Family Models.

» Review the modelsand try to reduce its complexity. This can be done for instance by flatten nested alternatives.
* Increase the model evaluation limitsin the preferences.
» Disable the extended auto resolver.

To disablethe extended auto resolver automatically if theinput models exceed acertain count of el ements, amodel
element count limit can be specified. The default is 100,000 elements.

6.2. Reuse of Variant Descriptions

6.2.1. Hierarchical Variant Composition

pure::variants supports the hierarchical composition of variants as explained in Section 5.6, “ Hierarchical Variant
Composition ” . A variant hierarchy is set up by creating links to VDMs or Configuration Spaces in a Feature
Model. Three different kinds of links are available;

» Variant Reference

A variant referenceissimply alink in a Feature Model to aconcrete VDM of another Configuration Space. The
selectionsin the linked VDM are locked and can not be changed in the resulting variant hierarchy.

» Variant Collection

A variant collection is alink in a Feature Model to another Configuration Space. The VDMs defined in this
Configuration Space are automatically linked. The selections in the linked VDMs are locked and can not be
changed in the resulting variant hierarchy.

e Variant Instance

A variant instance is alink in a Feature Model to another Configuration Space. In aVDM of a Configuration
Space with this Feature Model as input, it is possible to create concrete Instances below the variant instance
link, which just means to construct anew linked VDM with an empty and free editable selection for the linked
Configuration Space.

While Feature Modelsfrom alinked Configuration Space are directly linked below the link elements of the parent
Feature Model, the Family Models from the linked Configuration Space are linked into the first Family Model
of a corresponding Configuration Space, flat below the special element LINKED _FAMILY_MODELSthat is au-
tomatically created.

Note

Intentionally there is no restriction towards linking VDMs and Configuration Spaces recursively. Thus
it ispossible for example to link aVDM which itsef links other VDMs or whole Configuration Spaces.

To create alink to a Configuration Space or VDM below an element of a Feature Model select that element, click
right and select the wanted kind of link from the context menu (one of Variant Reference, Variant Collection or
Variant Instance). This opens awizard that allows to select the Configruation Space or VDM tolink. In case of a
variant collection link additionally the variation type of the link element has to be specified. The actual linking of
VDMsand Configuration Spacesis not performed directly in the Feature and Family Models containing the links.
It is performed when opening the VDMSs of a corresponding Configuration Space.

If avariant instance link is created, then the VDM Editor provides two additional actions in the context menu
on the corresponding link elements, i.e. New->Instance and Remove Instance . These actions allow to create and
remove the concrete instances, i.e. VDMs, of the linked Configuration Space.

Relations between the variants of a variant hierarchy can be expressed using restrictions and constraints. See
Section 9.7.8, “Name and ID References’ for details on how to reference elements from specific variants.

Hierarchical Variant Composition

Unique Names and IDs in linked Variants

To distinguish multiple instances of the same variant in avariant hierarchy, all IDs and the element unique names
in the models of each linked variant are changed according to the position of the variant in the hierarchy. Element
unique names are prefixed with the unique name of the corresponding link element in the parent variant, separated
by acolon (":"). If the parent variant is not the top of the variant hierarchy, then the unique names of its elements
also are prefixed this way. Figure 6.7, “Unique Names in a Variant Hierarchy” and shows a hierarchy of three
variants and how the unique names are prefixed in each variant.

Figure6.7. Unique Namesin a Variant Hierarchy

zl Top. utlm 3‘3‘-\'\

N epc.vdm 2,

= old]
E1a] § F LLdList

Lal B E LU lisk_feanre

=41 ? BLie
|i|,f7_-,|! Fo L1 Eiltemn
i -] ¥ (E) L1 Eritem_Feaure
Bgl? @
B3] | ELncen
-] TP L Ciitem_fechrs
FrOE B

Ead T R Lzone
ioEegl | ELE onelkam

i] TP L2 T kern_feature
[ERT R QI T EE
Fal §E L Theeeden
~51 T Fo L2 Threeitern_Feature

2 ¥ EiTop | a0 e L
{ Frtog festure R e festure
=0 7 e Lists B T dhems
ER~ R

oE- Y E acTtem
LT E Arbem_feates
ERE AL

Bl | e
4 [f L) P @00 ®8dtn
i Egl 1 OELLATEm Fbel ¥ T

®-11 1 Eciitem

[E) Festure Mociss [B Formily Fodels |

[oreTwoThreesdm 5\-‘&.\‘

: - = 1 List —
Bal | F Lo LD R et _fazhure

a1 1B Laist_Fesnre Fr-C]] G news

Erinl U ELemem =-6 7 & one

¢oE-C) E onetitem
i L1 1 F Onesitem Festure

i &l B F L onecbemn_featirs 5_ 2 &7

=ad ? FLTwn EI E = :.\I " X
PO g) P] E Twoten
Eogl §E L TeoTam & 7 B Thee

m-0 ¥ F Theae:Ibam

[E Featurs Modets | @] Femile Models

[—
| Top.udm 51 B

- -
ABC.udm B N

= 1§ g LIEED_FAMILY_MOCELS
=gl ¥ B psifamby: LLiLE
S Bt o]
=gl = @@ LULINKEC_FAMILY_MODELS
I%I &1 F Hipsifamby; LLisToam
e e
£1a] # B psfamly: LLi:tem
P A F BB LLE em_companent
g1l F 8 psifamiy: LLCTb=m
i A% @8 LLiCikem_momponert:
Era] T B psfamily: LEList
~al B LEdst_component
Eral ¥ g LELINED FAMILY_ MODELS
E--;_I,J 7 B psifamiy : L2:0ne:Tken
CLAlF E8 Leoneiter_comoanent
Eldn] F OB psifaniy: L2 Twomen
¢ LAl T @ LE Teotem_comonent
Eral F E psfamby: Lz Thres:diem
LT BB L Thresdiem_component

al |

|

[Fechure Modeks | B Famly Miodels

2 O ¥ g Top B 0§ ge _
T B wop_componeric fo[]F B lst_component

B0 1 s LIMED_FAMILY_MODELS
£ 01 83 psfamly: falmm

: L. ? 4 Aiikern_comporerk:
B F 82 psFamily: B:[tem

£-[1? & 8:kem_componant
g7 & ps:Family: C:Te=m

L7 38 Citem_ramparent

%) Fasture Model il Family Models

oneTwoThees.vdm ﬁ_
g 07 gLst »

[]'F 58 It _componiznt

F1 1]] s LINKED_FAMILY MODELS
BT 32 psfamiy: Oneddbem
: (NN ¥ @ creitam_comoonent
B07F & ps:Family: Two:Tten
©OLF EE Twoitem_comoonent
1] 5 pefamiy: Thestitem

L[] F H Thresti=m_cormponent

[te] Feaburs Madels |] Famiy Hodzks

%] Fashure Madek | B Family Madels |

The unique IDs are prefixed in the same way except that the unique ID of the link elementsis used as prefix.

Hierarchical Variant Composition

Example Variant Hierarchy

Figure Figure 6.8, “Example Variant Hierarchy” shows how asimple houseis modeled using Hierarchical Variant
Composition. The VDM houseistop-level and containsaVariant Instance Link named rooms. The house contains
a kitchen, a kids room, a living room and a bedroom. The figure shows the kids room and the kitchen. These
rooms are linked VDM s with the name room . This nameis prefixed with the name of the corresponding Variant
Instance Link element, i.e. Kids Room:Rooms . This ensures uniqueness of the element unique names. Samerule
is applied to the element IDs. The room VDM also contains a Variant Instance Link with name doors . It refers
to the doors Configuration Space, visible on the left. For the kids room two doors are available, i.e. Back_Entry
and Front_Entry . Note the exclusions in this model. For the concrete house the kitchen is excluded, and for the
kids room the back door is also excluded. The exclusion causesthe Model Evaluator not to propagate sel ections of
elements that are below the excluded element. Thus the selection is valid although for example kitchen: Doors or
Front_Entry:Material are explicitly selected. Warnings are shown to give the user ahint for thisfact, e.g. Excluded
'kitchen' overwrites selection of kitchen:Room .

Inheritance of Variant Descriptions

Figure 6.8. Example Variant Hierarchy

%‘ Variant Management - tests.links.linked/house/house.vdm - Eclipse SDK — O >

File Edit Mavigate Search Project Prolog Variant Run 50L Window Help

O C ¥ Q- v~ BlaBa@-=-~ B @ E B ¥ 4§
TR NCR |6 o @ 1 a &
', Variant Projects &2 =R ¥ =0 housevdm &2 alinkedfm.xfrm alinkedccfm.ccfm 3 =8
w Eﬂ teste.links.linked S w vl E F) house A i
= doors Wl ? (F) slantedroof =
w [house v [l 1 (F) entries D:ﬂ
housevdm] ¥ (Fr Front =
(= input 1 3 F) Back =]
v Wl T rooms
= output o psiconfigspaceid = 'iBz2YOsUuINXBuyTar'
= rooms @ p=configspacepath = 'S(PROJECT)/rooms/configspacexml’ =
alinkedccfm.ccfrm W ? @ living_room
alinkedfmxfm W ? bedroom =
Doorxfm v vl # @ Kids_Room -
housexfm ~ + 1 iF) Kids_Room:Room
Room.xfm w ~ I 1 () Kids_Room:Room_Type
< > 44 (P Kids_Room:Living_Room
5= Qutline 52 &d Visualization =8 gz E E:j::gzm:::;?;;m
:"?:D = | %8 (F) Kids_Room:childrenroom
Label ~ ~ v 1 [Kids_Room:Doors
1 1) Ausgang:Door v o psiconfigspaceid = 'isnVpDIDwSw_0ipOU’
s isnVpDIwSw_0lpOU'
] ? iF) Ausgang:knob F) . " P .
v @ ps:configspacepath = 'S(PROJECT)/doors/configspacexml
] % (F) Ausgang:wood) . I ,
'S{PROJECT)/doors/configspacexml
k| 3 (F) Back
v @ ? [@ Front_Entry
] 7 Back_Door -
'] %# (F) Back_Doorglas
W # [Back_Entry
v E F! Back_Entry:Door I
'] &b (F) Back_Entry:glas
| ? (F) Back_Entry:knob
] 1 iF) Back_Entry:Material v [v] ? [Back_Entry
ﬂ? @bedroom v E Fi Back_Entry:Door
v'| % (F) bedreom:bedroom v # name = 'Glas_Door’
vl ? @ bedreom:bedroomDoor * 'Glas_Door'
v 1 {F) bedreom:bedroomDoorDoor v % (F) Back_Entry:knob
] % (F) bedroom:bedroomDoor:glas v i |) Back Entry:Material
v 1 {F) bedroom:bedroomDoorMaterial /] € (E) Back_Entry:glas
v E@bedroom:Doors £l £ Back Entry:wood
Wl 1 E bedroom:GarageEntrance:Door va? Kitchen
1 # iF) bedroom:GarageEntrancetknob v
¥ ¥ F) bedroom: GarageEntranceiwood M
i | bedroom:livingRoomDoor
v 1T F bedroom:livingRoomDoor:Door
] ¥ (F) bedroom:livingRoomDoorglas
bl ? bedroom:livingRoomDoorknob - v
e . . v
(-/ U F bedroom.ll\rlnuRoomDoor.MaterlaI) Feature Models Family Models
L "__:l

6.2.2. Inheritance of Variant Descriptions

pure::variants supports sharing common feature selectiong/exclusions between several variant descriptions. This
allowsusersto definethe modelsfor each VDM from which selections are to beinherited. Changesin theinherited
model selection will be propagated automatically to all inheriting models. Inheritance is possible across Configu-
ration Spaces and projects. See Section 5.7, “ Inheritance of Variant Descriptions” for details.

The VDM inheritance hierarchy can be configured on the Inheritance Page of the Model Properties. See Sec-
tion 7.5.3, “ Inheritance Page” for adetailed description of this page.

46

Load a Variant Description

6.2.3. Load a Variant Description
It is possible to load the feature selection from another VDM into the currently edited VDM. Right-click in the

VDM Editor window and choose L oad Selection from VDM from the context menu. This opens the dialog
shown in Figure 6.9, “Load Selection Dialog” .

Figure6.9. L oad Selection Dialog

131 Load Selection from VDM/VRM O ®

Load Selection

Select a Variant Description Model or Variant Result Model to load from.

lo)

Enter or select the parent resource:

| Hierarchical Variant Example\Train |

v (=2 Hierarchical Variant Example
w 22 Train
WrongTrainwvdm
[configspacexml|
~ [Wagon
[configspacexml|

5

In this dialog the VDM from which to load the selection has to be selected. All selectionsin the currently edited
VDM are overwritten with the selections from the loaded VDM.

If thisaction is called in an instance element the selections are changed for the selected instance only.
6.2.4. Rename Reused Variant Description Model

A reused Variant Description Model ("instance") can be renamed by selecting Rename Instance ... from the
context menu as shown in Figure 6.10, “Rename Reused Variant Description Model” .

47

Reorder Reused Variant Description Models

Figure 6.10. Rename Reused Variant Description M odel

Trainwvdm &3 =8

~ v 1 (F) TrainFeatures
v « 1 (B Locomotive
\v| ¥ (F) Electric
] % (F) Diesel
b F) Gas
v v 12 Wagons
of ps:configspaceid = 'if4haWILHXDOStaN'
o ps:configspacepath = '$(PROJECT)/Wagen/configspacexml’

vET@- -
v vl v Select
I [| Deselect
[@ Exclude
¥ L] Deselect Subtree
arent:Gas
vO% @ Exclude Subtree
v Load Selection from VDM/VRM...
Open Variant Model
v Delete

Delete Instance

Rename Instance ...
[I Bookmark
v Filter...
Clear Filter
Expand All
Collapse All
Tree Layout ¥
Show Metrics

Coverage As ¥

|Tn_| Run JavaScript...

Feature Models Family Models

The opened dialog lets you choose a new name for the instance at hand and also has the option to alow a name
comparison. If the option is set in two instances with the same name and the same parent, these instances will be
treated as equal in comparisons. If the option is left out, the instance will be treated as unique and independent,
although it might be named and positioned as another instance in another Variant Description Model.

Figure 6.11. Rename Dialog

|T=_| Variant Instance Name O hoe

Yariant Instance Name

(@) Typethe name for the new variant instance

Unique Name: | Renamedinstance |

Py

6.2.5. Reorder Reused Variant Description Models

The reused Variant Description Models ("instances") can be reorder by selecting Reorder Instances from the
context menu as shown in Figure 6.12, “ Reorder Reused Variant Description Models’ . The context menu can be
found by right clicking on the instance group or any instance in the variant model editor.

Thereordering isonly allowed for non-inherited variant instances. The order of the inherited instancesisthe same
asin theinherited models and are grouped together in the order of the inherited models themselfs. Instance order

48

Reorder Reused Variant Description Models

mutation is allowed only between not inherited instances. Nonetheless, it is not allowed to move an instance out

of the containing group.

Figure 6.12. Reorder Reused Variant Description Models

® Child_2_1 3.vdm 2

v v 1 ® Top

v v 1 Instances |

al?
a7
a7
&l ?
a7
a7
v %
v ¥
v 7

V7

[= L

p3_instar
p3_instar
p2_instar
p2_instar
p1_instar
p1_instar
childinste
childinste
childinstz
childinste

Feature Models | & Farr

D Properties &

v 12 Instances L1

General
Description

Rationale

Unique

Unique Ne
Visible Ne

Class/T

o[o0 <

]

New >
Select

Deselect

Exclude

Deselect Subtree

Exclude Subtree

Load Selection from VDM/VRM...
Finalize Configuration

Reopen Configuration

Reorder Instances

Copy Url

Bookmark

Filter...
Clear Filter

Expand All
Collapse All

Tree Layout >

Show Metrics

pvSCL IDE >
Team >
Compare With >

Run JavaScript...

A dialog for reorder instances will pop up as shown in Figure 6.13, “Reorder Instances Dialog”, which lists two
categories of variant instances. Inherited instances are in the immutable list and non-inherited instances are in
mutablelist. Any or consecutive number of multiple instances can be selected and moved up or down using M ove
up or Move down button. To confirm the order, OK button can be pressed. Then Save the variant model to store
the instance order. The categories themselves are not movable. Inherited instances are always showed at the top

of the group.

Figure 6.13. Reorder Instances Dialog

Define variant instance order

Select mutable variant instance(s), then press Move up or Move down to reorder.

Instance Name

= Inherited instances (immutable)

= Mutable instances
childinstance1
childinstance2
childinstance3

childinstance4

@

Move up

Move down

OK Cancel

49

Transforming Variants

6.3. Transforming Variants

pure::variants supports user-defined generation of product variants, described by Variant Description Models, us-
ing an XML-based transformation component. See Section 5.9, “ Variant Transformation ” for a detailed infor-
mation about the transformation process.

A VDM istransformed by opening it in the VDM Editor and clicking on button € in the Eclipse toolbar. If more
than one transformation is defined in a Configuration Space then this button can be used to open thelist of defined
transformations and to choose one. Additionally this button allowsto open the Transformation Configuration Page
of the corresponding Configuration Space to add, remove, or modify transformations.

Figure 6.14. Multiple Transform Button

B &=~ ~ Bl vt Er D
Default
configl
tures configd

imotive Open Transformation Cenfig Dialog...

lectric

liesel

6.3.1. Setting up a Transformation

The transformation must initially be set up for a specific Configuration Space. Therefore the Configuration Space
properties have to be opened from the Variant Projects view by choosing Properties from the context menu of
the corresponding Configuration Space.

The editor is divided into six separate pages, i.e. the Model List page, the I nput-Output page, and the Trans-
formation Configuration page.

Model List Page

This page is used to specify the list of models to be used in the Configuration Space. At least one model must be
selected. By default, only models that are located in a Configuration Space's project are shown.

Figure 6.15. Configuration Space properties: M odel Selection

& Properties for Train [m| X

type filter text Configuration Space v v
Resource
|_‘5_| Access Rights
I':::_l Cenfiguration Space Inputhutput Transformation Configuration
Run/Debug Settings

Select models to be used in the config space.

Select used models:

Mame R Variation Type Default Type File Path
Train 1 mandatory on ps:ccfm fHierarchical Variant Example/Train.ccfm
[E] Train 1 mandatory on ps:fm fHierarchical Variant Example/Train.xfm
Wagon 1 mandatory on ps:ccfm /Hierarchical Variant Example/Wagon.ccfm
‘WagonFeatures 1 mandatory on ps:fm fHierarchical Variant Example/Wagon.xfm

Scope of models to show
(®) Current Project (O) Referenced Projects (@) Workspace

Restore Defaults Apply

) OK Cancel

50

Setting up a Transformation

In the second column ("R") of the models list the rank of a model in this Configuration Space is specified. The
model rank is a positive integer that is used to control the model evaluation order. Models are evaluated from
higher to lower ranksi.e. all modelswith rank 1 (highest) are evaluated before any model with rank 2 or lower.

The third column enables the user to select the variation type of a pure::variant model. Two variation types are
available mandatory and optional . An optional model can be deselected in a variant, mandatory models are
always part of the variant.

The next column ("Default") can be used to specify whether a optional model is default selected in the variants or
not. This semantic is ether equal to the default selected state of pure::variants model elements.

Clicking right in the models list opens a context menu providing operations for changing the model selection, i.e.
Slect all , Deselect all , and Negate selection .

Properties Page

This page is used to specify a description for the Configuration Space. Y ou can aso retrieve the Configuration
Space ID from here. The description supports different MIME types, like plain or HTML text. The MIME type
can be changed by clicking on the description type combo box. By changing the MIME type, al descriptions of
that Configuration Space are getting converted. The description al so supports different languages. Y ou can switch
between the languages by clicking on the dropdown on the bottom left. A Configuration Space can hold different
descriptions, one for each language.

Figure 6.16. Configuration Space properties: Properties

& Properties for Config O *
Configuration Space Gvoe

Resource Describe the configuration space.

oo - =
oo Configuration Spa .
Model List |Properties| Configuration Wizard Evaluation Input-Output Transformation Configuration

Run/Debug Settinc
1D: IWIrWa0Z3RZIXS5Z1

Description Type: IHTML—Text ~ I

Description
BZIUsx ES=EE 2129 A - -

This is an example description for the Configuration Space.|

-
< » Restore Defaults Apply
"?) Apply and Close Cancel

Input-Output Page

This page is used to specify certain input and output options to be used in model transformations. The page can
be left unchanged for projects with no transformations.

51

Setting up a Transformation

Figure 6.17. Configuration Space properties: Transformation input/output paths

& Properties for Train [m| X

type filter text Configuration Space T T

Resource . .
Specify the global input and cutput path for all used models.
|_‘5_| Access Rights pecify the g E e

|_|:|‘:| Configuration Space Model Lisransformation Configuration

Run/Debug Settings

Input path: | SIPROJECTMnput | Browse...
Output path: [S(PROJECT)\ Output/S(VARIANT) | | Browse.
Transformation log file: | | | Browse..,
Clear transformation output directory []Ask for confirmation before clearing
Create transformation cutput directory] Ask for confirmation before creating

[]Recover time stamp of unchanged files from previous transformation

Save the variant result model to: | S{OUTPUT)/S(VARIANT)vrm Browse...

[] Automatically save the variant result model when variant is saved

Restore Defaults Apply

@ 0K Cancel

Theinput path isthe directory wheretheinput filesfor the transformation are located. The output path specifiesthe
directory where to store the transformation results. The transformation log file is used by transformation modules
to log their activities while transformation. All path definitions may use the following variables. The variables are
resolved by the transformation framework before the actual transformation is started. To see which variables are
available for path resolution in transformations refer to Section 9.9, “ Predefined Variables”

The Clear transformation output directory check box controls whether pure::variants removes al files and direc-
tories in the Output path before a transformation is started. The Ask for confirmation before clearing check box
controls whether the user is asked for confirmation before this clearing takes place. The remaining check boxes
work in a similar manner and control what happens if the Output path does not exist when a transformation is
started.

The Recover time stamp... option instructs the transformation framework to recover the time stamp values for
output fileswhose contents has not been changed during the current transformation. |.e. even if the output directory
iscleared beforetransformation, anewly generated or copied file with the same contentsretainsits old time stamp.
Enable this option if you use tools like make which use the files time stamp to decide if a certain file changed.

The "Save the variant..." option instructs the transformation framework to save the Variant Result Model to the
given location. The Variant Result Modél is the input of the transformation framework containing the concrete
variants of the models in the Configuration Space.

The option "Automatically save the variant result model when variant is saved" doesinstruct pure::variantsto save
the Variant Result Model each time the corresponding Variant Description Model is saved.

Transformation Configuration Page

This page is used to define the model transformation to be performed for the Configuration Space. The transfor-
mation configuration is stored in an XML file. If the file has been created by using the wizardsin pure::variants it
will be named modul econfig.xml and will be placed inside the Configuration Space. However, there is no restric-
tion on where to place the configuration file, it may be shared with other Configuration Spacesin the same project
or in other projects, and even with Configuration Spaces in different workspaces.

52

Setting up a Transformation

Figure 6.18. Configuration Space properties: Transformation Configuration

& Properties for Config O >
Configuration Space MR

Resource . .
Define used modules for transformation

88 Configuration Spai . . :
Run/Debug Setting | Model List Properties Configuration Wizard Evaluation Input-Output |[Transformation Configuration]

Configuration File

‘ S(PROJECT)\System\moduleconfig.xml | Browse...
B X Module Configuration | Description Input-Output ~ Model List
Transformations E Enable Update Support |

Default Module Instances Add

& Generate Action List -
@ Execute Action List —

Remove

II:| Ignore transformation module errors I

@ 5 Restore Defaults Apply
‘/'?; Apply and Close Cancel

The Transformation Configuration Page allows to define a free number of Transformation Configurations which
all will be available for the Configuration Space. The lower left part of the Transformation Configuration Page
allows to create, duplicate, delete and move Module Configuration entries up and down. After pressing the left
most button Add a Module Configuration a new entry is added immediately whose name can be changed as
desired. If acomplex Module Configuration iscreated it might be useful to create acopy of it and edit it afterwards.
Use the button right to the add button Copy selected Module Configuration for this task. Following buttons allow
to delete and move a Module Configuration .

When a Transformation Configuration is selected on the | eft side, it can be edited with the lower right part of the
Transformation Configuration Page. A Module Configuration consists of alist of configured modules. Since many
modul es have dependencies on other modules they must be executed in a specific order. The order of execution of
the transformation modules is specified by the order in the Configured Modules list and by the kind of modules.
This order in the list can be changed using the Up and Down buttons.

If the Enable Update Support button on the top of the right page is checked, the created output of transformation
modules for a given variant has to support variant update scenario. In that case an already existing output for this
variant may not be overwritten while transformation but can be updated afterwards with the newly created output.

If the Ignore transformation module errors button on the bottom of the right page is checked, errors reported by
transformation modules do not cause the current transformation to be aborted. Use this option with caution, it may
lead to invalid transformation results.

The buttons on the right side allow transformation modules to be added to or removed from the configuration,
and to be edited. When adding or editing a transformation module awizard helps to enter or change the module's
configuration.

53

Setting up a Transformation

Figure 6.19. Transfor mation module selection dialog

£ Add Module O *

Available Modules I—\
9

Check the kind of module you want to use for the transformation

Transfoermation Module

Action List Generatar

[] 4 Action List Runner

[4 Ant Build Module

[] 4 Element Cluster Report

Il G External Program Runner

1 & HTML Transformation Module

[b5 Java Script Transformation Module
[& Makefile Generator

[Reuse Transformation

[4 Visual Studio Project File Generator
[[] 48 XSLT Script Runner

Enter the name of the module: I Convert transformer action list I

.1?"\ o=
CJ < Back MNext = Cancel

In the transformation modul e selection dialog a name has to be entered for the chosen transformation module. The
module parameters are configured in the "M odule Parameters' dialog opened when clicking on button Next.

Setting up a Transformation

Figure 6.20. Transfor mation module parameters

)

Module Parameters I—\
9

Enter values for the parameters of the module

| MName Type Yalue Add
| in ? pspath
I destroy ? ps:boclean v i
true
false
'f:?:' < Back Mext = Cancel

A transformation module can have mandatory and optional parameters. A module can not be added to the list
of configured modules as long as there are mandatory parameters without a value. Module parameters have a
name and a type. If there are values defined for a parameter, a list can be opened to choose a value from (see
Figure 6.20, “ Transformation module parameters’). If a default value is defined for a parameter, then this value
isshown asitsvalueif no other value was entered. Some modules accept additional parameters that can be added
and removed using the Add and Remove buttons. Additional parameters are aways optional and can have any
name, type, and value.

55

Setting up a Transformation

Figure 6.21. Configuration Space properties: Transformation Configuration

£ Properties for Config O X
Configuration Space Pwerw §
Resource

Define used modules for transformation
88 Configuration Spai

Run/Debug Setting

Model List Properties Configuration Wizard Evaluation Input-Output [Iransformation Configurationf

Configuration File

| S(PROJECT)\Systemymoduleconfig.xml | Browse...

.= K Maodule Configuration Input-Output Model List
Transformations ~ Description
Default B 7 U s == A% -||Ap A

This is an example description for the Transformation Conﬁgurationl

Restore Defaults Apply

@ Apply and Close Cancel

For collaboration purposes and for a better overview, it is possible to add a description to a Transformation.
Therefore the Transformation description uses the same MIME type as the related Configuration Space. It is
also possible to define different descriptions for different languages. Y ou can switch the description language by
clicking on the dropdown on the bottom | eft.

56

Setting up a Transformation

Figure 6.22. Configuration Space properties: Transformation Configuration

& Properties for Config O X
Configuration Space MR
Resource

§ : Define used modules for transformation
a8 Configuration Spa

Run/Debug Setting

Model List Properties Configuration Wizard Evaluation Input-Output fIransformation Configuration)|

Configuration File

‘ S(PROJECT)\System\moduleconfig.xml | Browse...
B X Module Configuration Description | Input-Output § Model List
Transformations Use configuration specific input-output settings
Default Input path: | $(PROJECT\input | Browse...
Output path: | $(PROJECT)Youtput | Browse...
Clear transformation output directory [] Ask for canfirmation before clearing
Create transformation output directory [] Ask for canfirmation before creating

Recaver time stamp of unchanged files from previous transformation

Restore Defaults Apply

('?; Apply and Close Cancel

For a special Module Configuration it is also possible to specify special Input and Output paths, which overwrite
the settings from Configuration Space. The Input and Output paths can be edited when selecting the Input-Out-
put tab as shown in Figure 4.5, “Transformation configuration in Configuration Space Properties’ . Layout and
behavior are identical to the Input-Output Page of the Configuration Space Properties Dialog with the exception
that Transformation log file and the Save the variant result model to fields are not available. The use of Module
Configuration specific Input and Output paths can be enabled with the check button Use configuration specific
input-output settings .

57

Setting up a Transformation

Figure 6.23. Configuration Space properties: Transformation Configuration

& Properties for Config O >
Configuration Space MR
Resource Define used modules for transformation
a8 Configuration Spa . . .
Run/Debug Setting Model List Properties Configuration Wizard Evaluation Input-Output |Iransformation Configuration
Configuration File
‘ S(PROJECT)\System\moduleconfig.xml | Browse...
B X Module Configuration Description Input-Output | Model List
Transformations Enable model filter
Default Select used models:
| Name | File Path
| B System /Standard Transformation Example/System.ccfm
@ 5 Restore Defaults Apply
‘/@ Apply and Close Cancel

The Modél List tab allows to specify atransformation configuration specific set of input models. The list can not
contain more then the used models defined for the config space itself. It is not possible to remove feature models
from the input model set. The selected input models will be processed by the defined transformation modules.
The deselected input models are not known by the transformation modules and will be completely ignored during
transformation. The variant evaluation will always use all input models as defined for the configuration space.

The use of atransformation module configuration specific input model set can be enabled with the check button
Enable model filter.

Note

Reducing the set of input models may have an unwanted impact in the transformation result.

Please see Section 5.9, “ Variant Transformation ” for more information on mode! transformation.

58

Setting up a Transformation

Figure 6.24. Configuration Space properties: Transformation Configuration

& Properties for configspacexml O X

| Configuration Space

Ri
esource Select models to be used in the config space

B8 Configuration Space - - -
Git Model List Properties Configuration Wizard Evaluation Input-Output Transfermation Cenfiguration

Run/Debug Settings Configuration File

S(PROJECT)\UserParameterTestProject\meduleconfigxml Browse...

Module Configuration Description Input-Output Model List ~ User Parameter

TE X T $
Transformations MName | | Type Value Add
Optional Parameter With Default 7 psstring default value —
Mandatory Integer Parameter ? psinteger =
Float Parameter '? psifloat Remove
Boolean Parameter ? psboolean
Dow
Restore Defaults Apply
':?;' Apply and Close Cancel

The User Parameter tab allows you to specify parameters that can be used to request user input before atransfor-
mation begins. These user parameters function like any other transformation variables, which means they can be
set as values for transformation parameters and allow users to provide values for transformation parameters.

To add a parameter, use the "Add" button and specify the user parameter. A name must be given, as well as the

parameter type. All other fields are optional. An optional parameter does not need to be specified by the user; it
will receive an empty value if no value is given and no default value is defined.

Figure 6.25. Configuration Space properties: Transformation Configuration

B8 User Parameter 4
User Parameter nn
Define User Parameter values for the current transformation execution. nn

Parameter With Default: default value

Integer Parameter:

Float Parameter:

Boolean Parameter: ~

eyt -
|‘3/| Start Transformation Abort

During the transformation, a dialog box appears asking the user to provide values for the parameters. Optional
parameters do not need to be set. However, mandatory parameters, which are writtenin bold letters, must be given
avalue. At this point, the transformation has not started and can be aborted.

59

Standard Transformation

6.3.2. Standard Transformation

The standard transformation is suitable for many projects, such asthose with mostly file-related actions for creat-
ing a product variant. Thistransformation also includes some special support for C/C++-related variability mech-
anisms like preprocessor directives and creation of other C/C++ language constructs.

The standard transformation is based on a type model describing the available element types for Family Models
(see Figure 6.26, “The Standard Transformation Type Model”).

Figure 6.26. The Standard Transformation Type Model

@ ccfmelement
«ClaSS» «ClaSS)) «CiaSS))
(3 genericcomponent ® geneticpart © genericsource
(3 component (& family @ part ® sowrce
(3 operator & method @ link (& functionimpl (& function @ class (3 aspect (3 project
(3 feature (3 object @ flag (3 classalias @ value (3 variable
o fid : feature o Yalue : string o Yalue : string o Yalue : string o Walue : string o Yalue : string
3 destiile

o file : path

o dir : directory

o type : filetype

o regex:pattern : regex(]

(3 vsproject (3 classaliasfile 3 flagfile (5 makefile O srcdestiite (3 symlink
o option @ YSProjectOption o alias ; string o flag : string o yariable : string o srcfile : path o linktarget : path
o operation | YSProjectOptionOp o =gt @ boolean o srodi - directory

o config @ YSProjectConfig

(& condtext (& condzml @ file (3 fragment (@ transform
o conditionname : string o conditionname : string o content : string o scriptfile path
o copyconditon : boolean o copyconditon : boolean o mode ; insertionmode o scriptdir : directory

The standard transformation supportsarich set of part and source elementsfor file-oriented variant generation. For
each source and part element type aspecific transformation action is defined in the standard transformation. Source
elements can be combined with any part element (and also with part types which are not from the set of standard
transformation part types) unless otherwise noted. For adetailed description of the standard transformation relevant
source element types see Section 9.5, “ Predefined Source Element Types” .

The supported part element types are intended to capture the typical logical structure of procedural (ps:function
, ps:functionimpl) and object-oriented programs (ps.class, ps.object , ps:method , ps.operator , ps.classalias).
Some general purpose types like ps:project , ps:link , ps.aspect , ps.flag, ps:variable, ps.value or ps.feature are
also available. For adetailed description of the standard transformation relevant part element types see Section 9.6,
“ Predefined Part Element Types” .

Setting up the Standard Transformation

The transformation configuration for the standard transformation is either set up when a Configuration Space is
created using the wizard, or can be set up by hand using the following instructions:

60

Standard Transformation

» Open the Transformation Configuration page in the Configuration Space properties.

» Add the module Action List Generator using the Add button. Name it for instance Generate Standard Trans-
formation Actionlist .

» Add an Action List Runner module. Name it for instance Execute Actionlist . Usually there should be only one
Action List Runner module, otherwise the action list gets executed twice.

Note: If the standard transformation is used together with the Makefile Generator module to add content to
one and the same file, then the Action List Runner module must not be placed before the Makefile Generator
module. Otherwise all the content added to the Makefile by the Action List Runner module will be overwritten
by the Makefile Generator module.

Providing Values for Part Elements

Some of the part element types have a mandatory attribute val ue . The value of this attribute is used by child
source elements of the part, for example to determine the value of a C preprocessor #def i ne generated by a
ps: flagfile source element. Unless noted otherwise any part element with an attribute val ue can be combined with
any source element using an attribute val ue . For example, it is possible to use a ps: value part with ps:flagfile and
ps: makefile source elements to generate the same value into both a makefile (as Makefile variable) and a header
file (as preprocessor #def i ne).

Calculation of thevalue of aps: f1ag Or ps: vari abl e part element is based on the value of attribute val ue . The
value may be a constant or calculation. There may be more than one attribute val ue defined on a part with maybe
more than one value guarded by restrictions. The attributes and its values are evaluated in the order in which they
are listed in the Attributes page of the element's Properties dialog. The first attribute resp. attribute value with a
valid restriction that evaluates to true or without arestriction is used.

Figure 6.27, “Multiple attribute definitions for Value calculation ” showstypical val ue attribute definitions. The
value 1 isrestricted and only set under certain conditions. Otherwise the unrestricted value 0 is used.

61

Standard Transformation

Figure 6.27. Multiple attribute definitions for Value calculation

l2] Mew Feature O *
Adtributes
2]
Edit Attributes...
Attribute # %g F & Type Value Add
- value 2 ¥ ps:string @ 1,0
1. o P Remove
2. =0 Add value
Remove value
Move up
Mowve down
Description
B I U:#==E=EZEE|E = =0 P
v
< >
@@- ok | News Cancel

Modify Files using Regular Expressions

Text based files can be modified during the transformation using a search and replace operation based on regu-
lar expressions. For this purpose the file must be modelled by a source element with a type derived from type
ps.destfile . Theregular expression to modify thefileis provided in the attribute regex: patter n that hasto be added

to the source el ement. This attribute can have several values, each containing aregular expression, that are applied
to thefile in the order they are given.

62

Standard Transformation

Figure 6.28. Sample Project using Regular Expressions

& Variant Management - Demao/Demo.ccfm - Eclipse SDK —] X
File Edit Mavigate Search Project Prolog Run SOL Window Help

o= € R% Q- &2 an 5 [S R x| a@ s [Rvamamvenas| >
t Projects 23 =4 e e ==
- 5
o- :%:€> <.==='{> = e E @ Demo n
il ™ =2 Demo v~ 7@ PTFDJECt o il
=% Demo @ version = "1.0¢ i
= input W ? & folder: Sources
= output d ? B psfile: Readme. bt
Demao.ccfm o file = 'Readme.txt’
= ' F o
Demoadm 0: dir=". .
.7 Hierarchical Variant Example # type = 'misc

v o regecpattern = 's/STATE/Beta Phase/; 's/STATE/Production’
v =5, 's/STATE/Beta Phase/"
I Beta
W =5, 's/STATE/Production’
& Production
v 7 psfile: index.htrnl
file = ‘indexhtml
o dir=""
£ regexpattern = 'getAttribute('Project’,'version','VERION'), sformat(Value,'s/VERSIOMN/ ~w,", [VERSION])'

Tree| 5] Table| =3 Graph| 4 Constraints
B Properties i D]]Buukmarks BL Problems =t E ~¥ =0
regex:pattern = 'getAttribute('Project’,'version'...RION’), sformat(Value,’s/VERSION/~w/",[VERSION])"

General Unique ID | iVP4cBldkglpg-Y_N

Description MName | regex:pattern ~ |

3 Fixed []Inheritable

T)rpe| psiregex|] v|

Value | getAttribute(Project’,'version', VERION'), sformat(Value,'s/VERSION/ ~wy" [VERSION]) |

Ed

Regular Expression Syntax

The syntax of the regular expressionsis sed based:

‘ s/ pattern/repl acenent/fl ags

Prefix s indicates to substitute the replacement string for strings in the file that match the pattern. Any character
other than backslash or newline can be used instead of a dash to delimit the pattern and the replacement. Within
the pattern and the replacement, the pattern delimiter itself can be used as a literal character if it is preceded by
abackslash.

An ampersand ('&') appearing in the replacement is replaced by the string matching the pattern. This can be
suppressed by preceding it by abackslash. The characters"\n", wherenisadigit, are replaced by the text matched
by the corresponding back reference expression. This can also be suppressed by preceding it by a backslash.
Both the pattern and the replacement can contain escape sequences, like \n' (newline) and \t' (tab).

The following flags can be specified:

n Substitute for the n-th occurrence only of the pattern found within thefile.

g Globaly substitute for all non-overlapping strings matching the pattern in the file, rather than just for the first
one.

See http://www.opengroup.org/onlinepubs/000095399/utilities/sed.html for more details about the sed text re-
placement syntax.

63

http://www.opengroup.org/onlinepubs/000095399/utilities/sed.html

User-defined transformation scripts with JavaScript

6.3.3. User-defined transformation scripts with JavaScript

In conjunction with the pure::variants JavaScript extension functions JavaScripts can be used to generate product
variants. No special requirements are placed on the transformation you have to perform and using the extension
functionsis quite straightforward:

» Open the transformation configuration page in the Configuration Space properties.

Add the Javacript Transformation module using the Add button. Name it for instance Execute JavaScript .

» The module parameters can be changed on next page.

Enter the path to the script file you want to execute as value of the javascriptfile parameter .

An (optional) output file can be specified using the outputfile parameter.

 PressFinish to finish set up of the JavaScript transformation.

Example:

To demonstrate how to use JavaScripts for generating a product variant, the following example will show the
generation of atext file, which contains alist of used features and some additional information about them. This
exampl e uses a user-provided JavaScript. The used JavaScript can a so be found in the Javascript Transformation
Example project.

Within the JavaScript the pure::variant extensibility options can be used. An APl documentation is part of the
pure::variants Extensibility SDK.

The example JavaScript looks like this:

/**

* To set up JavaScript Transformati on open configurati on space properties
* and go to "Configuration Space" -> "Transformation Configuration"

* and add a JavaScript Transformation Module with this JavaScript.

*/

/] gl obal vari abl es

var nodul e = nodul e_i nstance() ;

*

/
Initialize this JavaScript transformation nodul e.
This method is optional and does not need to be inpl enented.

@ar am {1 PWari ant Model } vdm
The concrete variant description nodel .
@aram {1 PVModel []} npdel s
The concrete feature and family nodels.
This provides the full view of the current variant including all elenments
frominstances, variant references and variant collections.
@aram {java. util.Mp<String, String>} variables
The variabl es of the transformati on configuration.
@aram {java. util.Mp<String, String>} paraneter
The paraneter of the JavaScript transformation nodul e.
@aram {org. ecli pse.core.runtinme.|Progresshnitor} nonitor
The nmonitor for this operation

@eturn {CientTransfornttatus} the status of this nodul e nethod

E R O I R RN T T R

~

function init(vdm nodels, variables, parameter, nonitor) {
var status = new Cient Transfornttatus();
st at us. set Message(Const ant s() . EMPTY_STRI NG ;
status. set Stat us(Cl i ent Transf or nSt at us() . OK) ;

return status;

/**

64

User-defined transformation scripts with JavaScript

Perform transformation preparation steps.

This method is called after all nodul es have been initialized and before
any nodul e i s processed.

This method is optional and does not need to be inpl enented.

@aram {org. ecli pse.core.runtinme. | ProgressMnitor} nonitor
The nonitor for this operation

@eturn {CientTransfornttatus} the status of this nodul e nethod
/
function prepare(nonitor){

var status = new Cient Transfornttatus();

st at us. set Message(Const ant s() . EMPTY_STRI NG ;

status. set Stat us(Cl i ent Transf or nSt at us() . OK) ;

5k ok ok kX % %k ok ok Ok

return status;

}

/**

* Do the work of this JavaScript transformati on nodul e

*

* @aram {org. eclipse.core.runtine.|ProgressMnitor} nonitor

* The nmonitor for this operation

*

* @eturn {ClientTransfornStatus} the status of this nodul e nethod
*/

functi on work(nonitor) {
var status = new Cient Transfornttatus();
st at us. set Message(Const ant s() . EMPTY_STRI NG ;
status. set Stat us(Cl i ent Transf or nSt at us() . OK) ;

var fo = null;

try {
var path = nodul e. get Vari abl e(" QUTPUT") ;
var filename = "FeaturelList.txt";

var outputfile = nodul e. get Paraneter ("outputfile");

if (outputfile !'= null && outputfile !'="") {

fo =newjava.io.FileWiter(new java.io.File(outputfile));

} else {

fo = newjava.io.FileWiter(new java.io.File(path, filenane));

}

var nodel s = nodul e. get Model s() ;
var steps = cal cul at eWsr k(nodel s) ;
noni t or. begi nTask("Print Features", steps);

for (var index = 0; index < nodels.|ength; index++) {
/] convert to pure::variants nodel
var nodel = new | PVModel (nodel s[i ndex]);
/'l check if nodel is a concrete feature nodel
if (nodel . get Type(). equal s(Mdel Constants().CFM TYPE) == true) {
/] convert to feature nodel
var fnodel = new | PVFeat ur eMbdel (nodel) ;
/] get the root feature
var root = fnodel.getRoot();
/'l print features starting at root
print Features(fo, root, nonitor);
}
}
} catch (e) {
st at us. set Message(e.toString());
status. set Status(Cl i ent Transf or nSt at us() . ERROR) ;
} finally {
if(fo!=null){
fo.close();
}
}

65

User-defined transformation scripts with JavaScript

return status;

}
/**
* Performtransformati on post-processing steps.
*
* This method is called after all npdul es have been processed and before any
* nodul e is cleaned up, in reverse order. The first nodul e on which
* {@ink #prepare(lProgresshnitor)} has been called is the |ast on which
* this nethod is called.
*
* This method is optional and does not need to be inpl enented.
*
* @aram {org. eclipse.core.runtine.|ProgressMnitor} nonitor
* The nmonitor for this operation
*
* @eturn {ClientTransfornStatus} the status of this nodul e nethod
*

~

function postpare(nonitor){
var status = new Cient Transfornttatus();
st at us. set Message(Const ant s() . EMPTY_STRI NG ;
status. set Stat us(Cl i ent Transf or nSt at us() . OK) ;

return status;

}
/**
* Finalize JavaScript transformati on nodul e
*
* @aram {org. eclipse.core.runtinme.|ProgressMnitor} nonitor
* The nmonitor for this operation
*
* @eturn {ClientTransfornStatus} the status of this nodul e nethod
*

~

functi on done(nonitor) {
var status = new Cient Transfornttatus();
st at us. set Message(Const ant s() . EMPTY_STRI NG ;
status. set Stat us(Cl i ent Transf or nSt at us() . OK) ;

return status;

}

function cal cul at eWor k(nodel s) {

var total = O;

for (var index = 0; index < nodels.|ength; index++) {
/] convert to pure::variants nodel
var nodel = new | PVModel (nodel s[i ndex]);
/'l check if nodel is a concrete feature nodel
if (nodel . get Type(). equal s(Mdel Constants().CFM TYPE) == true) {

total += nodel . getEl enentLi st (). size();

}

}

return total;

}
/

*

Print the information of a feature to the output file
and do to the children.
@aram {java.io.FileWiter} fo
The file witer in order to wite the information
@aram {| PVEl enent} el ement
The el enent to print
@ar am {org. ecli pse.core.runtinme. | Progresshnitor} nonitor
The nmonitor for this operation

EE R O T R R

~

function printFeatures(fo, elenent, nonitor) {
nmoni tor. subTask("Print: " + el enent.get Nanme());

[/ print information to file
fo.append("Visible Nane: ");
f o. append(el enent. get VNane()) ;

66

User-defined transformation scripts with JavaScript

}

f 0. append(Const ant s() . NEW.I NE_STRI NG) ;
fo. append(" Uni que Nane: ");

fo. append(el enent . get Nane()) ;

f 0. append(Const ant s() . NEW.I NE_STRI NG) ;
f 0. append(Const ant s() . NEW.I NE_STRI NG) ;

nmoni t or. wor ked(1) ;

/'l go to children

var children = el enent.getChildren();

var iterator = children.iterator();

while (iterator.hasNext() == true & nonitor.isCanceled() == false) {
var child = new | PVEl enent (i terator.next());

print Features(fo, child, nonitor);

}

The script consists of three main functions. These three functions will be called by the transformation module.

init()

This method is optional. Necessary work can be done here, before transformation starts, like initializing the
script. Gets necessary information from transformation module, like the used variant model, the used modelsin
this variant, some variables and the transformation parameters. All thisinformations can also be retrieved from
the JavaScript transformation module using getter functions.

prepare()

Thismethodisoptional. Itiscalled after al transformation modulesareinitialized and before any transformation
moduleis performed.

work()
Does the whol e transformation work.
postpare()

This method is optional. This method is called after all modules have been processed and before any module
is cleaned up, in reverse order. The first module on which prepare has been called is the last on which this
method is called.

done()

This method is optional. After transformation is finished, this function is called, to provide possibility to do
some work after transformation.

If the transformation parameter outputfile was used, the variable out can be used to write directly to the given file.
Otherwise the variable out writes to the Java standard output. The function module_instance() provides access
to the transformation module instance, which is running the JavaScript transformation. This gives access to the
transformation module API.

Evaluate PVSCL rules in a JavaScript Transformation

In general, one of the easiest ways to create variant specific assets is through the use of JavaScript transforma-
tions. It is possible to evaluate pvSCL expressions in the context of the currently transformed variant from within
JavaScript transformations. We made this API as simple as possible, meaning all the cumbersome stuff of setting
up the evaluator as well as putting each and every parameter correctly is hidden. You just take the expression
and give it as parameter into one of two functions depending on having a rule (e.g. restriction or constraint) or
acalculation.

The following two examples show the simple usage:

Eval uator.rul e(' Feature_A');

Eval uat or. cal cul ati on(' 5*6');

67

Transformation of Hierarchical Variants

Thefirst line will evaluate to true or false depending on the selection state of the feature Feature A and result of
the second line is going to be 30 . Asyou see very simple. Thus you may concentrate on implementing the heart
of the transformation and not fiddling around on the evaluator in order to set it up in the right manner.

Side note: If you want to have full access to the correct initialized evaluator, you can call

‘ Eval uat or . get Def aul t () ;

With the object returned by this call, you have the evaluator for the currently transformed variant in hand. See the
related Java APl referencein the SDK documentation for more information.

6.3.4. Transformation of Hierarchical Variants

When a transformation of a hierarchical variant is performed then a single transformation is performed for each
variant in the hierarchy. Only those transformations of linked variants are executed that have the name "Default”
or the name of the top-level variant transformation (if not "Default").

The order of the transformationsistop-down, i.e. first the top-level variant is transformed, then the variants bel ow
the top-level variant, and so on. Each single transformation is performed on the whole Variant Result Model,
stating two lists of model elements, i.e. the transformation Entry-Points list and the transformation Exit-Points
list. These lists describe the section of the Variant Result Model that represents the variant to transform. Some
transformation modules may not support these lists and always work on the whole Variant Result Model.

There is a specia variable $(VAR ANTSPATH) that should be used in a transformation of hierarchical variants to
specify the transformation output directory. This variable contains the name of the currently transformed variant
(VDM) prefixed by the names of its parent variants (VDMs) according to the variant hierarchy. The variant names
are separated by adlash ("/"). Using this variable makesit possible to build adirectory hierarchy corresponding to
the variant hierarchy. This may also avoid that the results of the transformation of one variant are overwritten by
theresults of the transformation of another variant. See Section 9.9, “ Predefined Variables” for moreinformation
on the use and availability of variables.

Transformations of linked variants have to handle the prefixed unique names and I Dsin the models of the variant
(seethesection called “ Unique Namesand I Dsin linked Variants”). Especially Conditional Text resp. Conditional
XML transformations have to reference elements with their full, i.e. prefixed, name. If for instance the condition
in afile transformed with Conditional Text is"Foo" then this condition awayswill fail if evaluated in the context
of alinked variant. The correct condition would be "Link1:Foo", if linked below the link element with unique
name "Link1".

6.3.5. Reusing existing Transformation

Thetransformation module Reuse Transfor mation providesthe possibility to reuse already existing transformation
configurations. These existing configurations can be run with the first vdm, the last vdm or with each vdm of a
configspace or vdm selection.

The Reuse Transformation module has two mandatory parameter.

The first parameter Triggered by defines for which vdm of the current transformation the reused transformation
configuration is triggered. The three allowed values First VDM , Each VDM and Last VDM are provided in a
combo box. Each VDM isthe default.

The second parameter Transformation defines the name of the transformation configuration, which will be trig-
gered by this module.

The configuration space settings are inherited as follows:

Table6.1. Configuration Space Settings

Input Directory Used from the Reuse Transformation configura-
tion, if defined. From Configuration Space otherwise.

Output Directory Used from the Reuse Transformation configura-
tion, if defined. From Configuration Space otherwise.

68

Ant Build Transformation Module

Create Out-
put Directory

Used from the Reuse Transformation configura-

tion, if defined. From Configuration Space otherwise.

Cleanup Out- Used from the Reuse Transformation configura-

put Directory tion, if defined. From Configuration Space otherwise.
Create Out- Used from the Reuse Transformation configura-

put Directory tion, if defined. From Configuration Space otherwise.

Confirm Create
Output Directory

Used from the Reuse Transformation configura-

tion, if defined. From Configuration Space otherwise.

Confirm Cleanup
Output Directory

Used from the Reuse Transformation configura-

tion, if defined. From Configuration Space otherwise.

Recover Timestamps

Used from the Reuse Transformation configura-

tion, if defined. From Configuration Space otherwise.

Force Trans- Always true, because decision was made by us-
formation er before running Reuse Transformation already.
Save Variant Always fal se, because cannot be defined in transforma-
Result Model tion configurations. It is configuration space settings only.
Ignore Transfor- Used from the Reuse Transformation configuration.

mation Errors

6.3.6. Ant Build Transformation Module

The transformation module Ant Build Module provides the possibility to call an Ant build during the transforma-
tion. The module has two parameter.

Thefirst parameter Build File defines the location of the Ant build file.

The second parameter Target defines the target for the build. If no target is given the default target of the Ant
build file will be used.

6.4. Validating Models

In the context of pure::variants, Model Validation is the process of checking the validity of feature, family, and
variant description models. Two kinds of model validation are supported, i.e. validating the XML structure of
models using a corresponding XML Schema and performing a configurable set of checks using the model check
framework.

6.4.1. XML Schema Model Validation

This model validation uses an XML Schemato check if the XML structure of a pure::variants model is correct.
Thisis pure syntax check, no further analyses of the model are performed.

The XML Schema model validation is disabled per default. It can be enabled selecting option "Validate XML
structure of models..." on the Variant Management->Model Handling preferences page (menu Window-> Prefer -
ences). If enabled all pure::variants models are validated when opened.

Note
Invalid models will not be opened correctly if the XML Schema model validation is enabled.

For more information about XML Schema see the W3C XML Schema Documentation .

6.4.2. Model Check Framework

Themodel check framework allowsthe validation of modelsusing aconfigurable and extensible set of rules(called
"model checks"). There are no restrictions on the complexity of model checks.

69

http://www.w3.org/XML/Schema

Model Check Framework

Configuring the Framework

The model check framework is configured on the Variant Management->Model Validation preference page
(menu Window->Pr efer ences). On the Check Configurations tab the model check configurations can be man-
aged and activated (see Figure 6.29, “Model Validation Preferences Page”).

Figure 6.29. Moddl Validation Preferences Page

% Preferences O x
type filter text Model Validation oo v -
DXL Editor A : .
Help Check Configurations Automatic Validation
Install/Update Available Configurations
Java ZJ Al Model Checks ¥
JavaCC Preferences Ew
. =/ All Element Checks
JavaScript Edit
Plug-in Development
Prolog Preferences Delete
Report Design
Run/Debug Copy
Team
Validation
~ Variant Management Selected Configuration
Connector Preferen: w [Element Checks ~
Image Export £ Check Alternative vs, RecommendedFor (Feature Mod
Known Servers i Check Alternative vs, RecommendedForall (Feature M
Metrics £ Check Alternative vs. Recommends (Feature Model)
Model Handling i Check Alternative vs. RequiredFor (Feature Model)
Medel Validation % Check Alternative vs. RequiredForall (Feature Maodel]
puresvariants Licens i Check Alternative vs. Requires (Feature Model) W
Relation Indexer < >
SDK Preferences
Visualizati
sughization ¥ Restore Defaults Apply
£ >
o
@ Cancel

The two default configurations "All Model Checks' and "All Element Checks' are always available. "All Model
Checks" contains all model checks that perform whole model analyses. Compared with "All Element Checks"
containing all checks that perform analyses on element level. The configuration "All Element Checks" is enabled
per default if the pure::variants perspective is opened the first time.

A model check configuration is activated by selecting it in the Available Configurations list. If more than one
configuration is selected, the checks from all selected configurations are merged into one set that becomes acti-
vated.

The checks contained in a configuration are shown in the Selected Configuration list by clicking on the name
of the configuration. The checks are listed by its names followed by the list of model types supported by a check.

Additionally the icon ¥ reveals if the check is enabled for automatic model validation (see the section called
“Performing Model Checks’). A brief description of a check is shown by moving the mouse pointer over the
check name.

All but the two default configurations "All Model Checks® and "All Element Checks' can be deleted by clicking
first on the name of the configuration and then on button Delete .

A new configuration can be created by clicking on button New . This will open the New Check Configuration
dialog as shown in Figure 6.30, “New Check Configuration Dialog” .

70

Model Check Framework

Figure 6.30. New Check Configuration Dialog

'T“_I MNew Check Cenfiguration b4

New Check Configuration

lo)

Configuration Name: | My Mew Configuration |

Available Checks

[J &= Other Checks ”~
v [#] = Model Checks

[& Check CCFM structure (Family Model, Variant Model)

[#]#: Check Attribute Types In Variant Description Models (Variant Model)

@ Check Children (Feature Model, Family Model)

[£ Check Complete Configuration in Family Models (Variant Model)

[~] & Check Complete Configuration In Feature Madels (Variant Model)

[#] ¥ Check If Unique Name |s Unique In Model (Variant Model, Feature Mo .,
< ’ >
Check Details

Model Types: Variant Model, Feature Model, Family Model

Checks if the unique name of all elements in the model are really

o unigque.
Description:

>

For a new check configuration a unique name for the configuration has to be entered. The available checks are
shown in the Available Checks tree and can be sel ected for the new configuration by clicking on the check boxes
of the checks. Clicking on the root of a sub-tree selects/deselects al checks of this sub-tree.

Detailed information about a check are displayed in the Check Details area of the dialog if the name of acheck is
selected. The Model Types field shows the list of model types for which the corresponding check is applicable.
The Description field shows the description of the check.

The same dialog appears for editing and copying check configurations using the Edit and Copy buttons. Only
non-default configurations can be edited.

And with the "Enable check for..." button (or clicking on theicon & of a check)

Automatic Model Validation

On the Automatic Validation tab it can be configured which checks are allowed to be performed automatically
(seeFigure 6.31, “Automatic Model Validation Preferences Page”). If the automatic model validation is enabled,
after every change on the model those checks are performed from the active check configurationsthat are enabled
for automatic model validation.

71

Model Check Framework

Figure 6.31. Automatic Model Validation Preferences Page

% Preferences

type filter text

DXL Editor

Help

Install/Update

Java

JavaCC Preferences

JavaScript

Plug-in Development

Prolog Preferences

Report Design

Run/Debug

Team

Validation

w Variant Management
Connector Preferent
Image Export
Known Servers
Metrics
Model Handling
Maodel Validation
purexvariants Licens
Relation Indexer
SDK Preferences
Visualization
< >

@

Model Validation 4=l 2 v v

Check Configurations Automatic Validation
Available Checks

[= Other Checks
v [] = Model Checks
&% Check CCFM structure (Family Model, Variant Model)
% Check Attribute Types In Variant Description Models (3
.ﬁa Check Children (Feature Model, Family Model)
s Check Complete Configuration in Family Models (Wari
[% Check Complete Configuration In Feature Models (Var
s Check If Unique Mame Is Unigque In Model (Variant Mo
% Check Fixed Attributes In Variant Description Models {1
& Check Linkingchain (Variant Madel)
[#] = Element Checks
] &= Known Issue Checks

Restore Defaults Apply

TheAvailable Checkstree showsall known checksindependently from the selected check configuration. Clicking
on the check box of a check toggles the automatic validation state of the corresponding check. Clicking on the
root of asub-treetogglesall checks of this sub-tree.

A description of the check is shown by moving the mouse pointer over the check name.

Performing Model Checks

A model can be checked using the selected model check configurations by opening the model in a corresponding

model editor and pressing button = in the tool bar. This will start a single model validation cycle. The progress
of the model validation is shown in the Progress view.

72

Refactoring Models

Figure 6.32. Model Validation in Progress

& Variant Management - Weather Station Example/W5.ccfm - Eclipse SDK — O x
File Edit Mavigate Search Project Proleg Run S0L Window Help

i~ CE KK Q- ¥ v EfLJl I'?] =] EI Variant Mana...
- - - - 3 | 3*‘1 Java
" Variant Projects 52 =0 WS.ccfm 22 =0
=3 =
o L s T ~ U g HTML Weather Station A
%7 o 1% Weather Station Example v T ‘.“.fFeatherStationHTML -
& & input w @ srodir= " =
= reports . X: ””
[script h » dir=".
[Variants % =
] Readmetdt vid cst
WS.cofm v @ sredir = 'S ess'
WSafm e
v @ dir="/css'
w= ' fess'
L S S, v

Tree| 5 Table =3 Graph| & Constraints

= Properties EII]BDUkmarks rf._ Problems 2 ¥ =08
0 errors, 1 warning, 0 others
s

Description Resource Path

& Warnings (1 item)

If no model check configuration is selected a dialog is opened inviting the user to choose a non-empty check
configuration. This dialog can be disabled by enabling the "Do not show again” check box of the dialog.

The button £* is used to enable automatic model checki ng, i.e. after every change on the model anew check cycle
is started automatically. In contrast to the single model validation cycle only those checks are performed from
the active check configurations that are enabled for automatic model validation. Automatic model validation is
enabled by default.

The result of a model check cycle is alist of problems found in the model. These problems are shown in the
Problems view and as markers on the model. A list of quick fixes for a problem can be shown either by choosing
"Quick Fix" from the context menu of the problem in the Problems view or by clicking on the corresponding
marker on the model. For some problems special quick fixes are provided fixing all problems of the same kind.

6.5. Refactoring Models

To simplify the editing of Feature and Family Maodels pure::variants provides a set of refactoring operations. They
support the user to efficiently change model objects like elements, relations, restrictions and attributes.

The refactoring operations can be accessed via the context menu of the Feature and Family Model Editors, see
Figure 6.33, “Refactoring context menu for afeature” .

73

Comparing Models

Figure 6.33. Refactoring context menu for afeature

v 1B Manual
v 1 (F) Target Group
& [F) Developer
&

MNew ¥
[] Bookmark
¥ Delete Delete
Refactor » Unique Name ...

of Cut Extract ...

5 Copy
Paste

Delete ...
Variation Type Mandatory
Element Type Optional

Default Selected

Copy Url
Alternative

Or

¥ ==

=+ -
S Filter... r

Clear Filter

Expand All
Collapse All
Tree Layout >

The refactoring operations provided in the context menu depend on the selection made in the editor. For instance,
select two or more features and right-click on one of the selected features to open the context menu. The appearing
Refactoring menu contains for example itemsfor changing the variation type. This operation allows to modify the
variation type for all selected features at once. Refactoring operations can include changes beyond the selected
element on referencesin the selected scope. Therefor, refactoring operations can be long running actions. Further-
more it should be noted, that the appropriate rights have to be granted in all affected model s and el ementsto ensure
a successful operation. If access rights are missing awarning will be shown. Proceeding only on the models and
elements where rights are sufficiently available, can result in references that are not updated.

The following list summarizes the avail able refactoring operations.

Table 6.2. Refactoring Operations

Operation on Available Operations
Unique Name
Extract
Delete
Elements I
Variation Type Change
Element Type Change

Default-Selected State Change
Attribute Name, Type, and Vaue Change

Attributes

Inheritable and Fixed State Change
Restrictions and Constraints Restriction/Constraint Code Change
Relation Type Change
Relations P g

Relation Targets Change

To extract an element or feature from a model, the target model has to exist. References to the extracted element
or feature (via unigue name or ID) will be updated in restrictions, constraints, and calculations with respect to
the selected scope, e.g. the enclosing project, the project and all referenced projects, or the whole workspace.
Depending on the scope and the amount and size of itemsto process, the refactoring operations can belong running
actions.

6.6. Comparing Models

In pure::variantstwo model s can be compared using the M odel Compare Editor. It isbased on the Eclipse Compare.

74

General Eclipse Compare

6.6.1. General Eclipse Compare

In general, comparison of resources is divided into two different types. One is to compare two resources with
each other. Thisiscalled atwo-way compare. A two-way compare can only reveal differences between resources,
but can not recognize in which resource a change was performed. A two-way compare in Eclipse is obtained by
selecting two resources and then choosing Compare With->Each Other from the context menu. Other two-way
comparisons supported by Eclipse are Compare With->Revision and Compare With->Local History .

A morecomfortable compareisthe so called three-way compare. In addition it has an ancestor resourcefromwhich
is known that this is the unchanged resource. In this way it can be determined which change was performed in
which resource. Such compare editors are opened for instance for synchronizing resources with CV S repositories
which always maintain athird ancestor resource by using Compare With->Latest fromHead and Compare With-
> Another Branch or Version .

The compare editor is divided into an upper and alower part. The upper part shows structural changesin adiffer-
ence tree. The lower part presents two text editors located next to each other. Changes are highlighted in colored
lines or rectangles on both sides. Those belonging to one change are connected with aline. For two-way compar-
isons the changes are always grey-colored. In three-way comparisons outgoing (local) changes are grey-colored,
incoming (remote) changes blue-colored, and changes on both sides which are conflicting are red-colored.

A resource compare can be used to view changes for two resources. In addition it provides the possibility to apply
single changes to local models. Therefor the compare editor provides a toolbar, located between the upper and
the lower part, with actions which can be used to apply changes: Copy All from Left to Right , Copy All Non-
Conflicting Changesfrom Right to L eft , Copy Current Changefrom Left to Right , Copy Current Change
from Right to Left , Select Next Change, Select Previous Change . You can step through the changes and
apply them if the specific buttons are enabled. As stated above refer to the Eclipse Workbench User Guide for
detailed information on this.

6.6.2. Model Compare Editor

In general the Eclipse text compare editor is opened for any resource after calling the actions described in the
previous section. For pure::variants model sthe special pure::variants M odel Compare Editor isopened. Thismakes
it easier to recognize changesin pure::variants models. Typical changes are for example Element Added, Attribute
Removed, Relation Target Changed .

The upper part of the editor, i.e. the structure view, displays a patch tree with a maximum depth of three. Here
all patches are grouped by their affiliation to elements. Thus Element Added and Element Removed are shown as
top level patches. All other patches are grouped into categories below their elements they belong to. Following
categories exist: General , Attributes , Relations , Restrictions , Constraints and Misc . The names of the
categoriesindicate which patches are grouped together. Below the category Misc only patches are shown that are
usually not displayed in the models tree viewer. Asin the Eclipse text compare you can step through the patches
with the specific buttons. Each step down always expands amodel patch if possible and stepsintoit. Thelabelsfor
the patch consist of abrief patch description, thelabel of the patched model item and a concrete visualization of the
old and the new valueif it makes sense. Hereisan example: Attribute Constant Changed: attrname = 'newValuge' <-
oldVaue. Inthisattribute patch's label anew valueis not additionally appended, becauseit is part of the attributes

(new) label "attrname = 'newValue' ".

The lower part of the model compare editor isrealized using the usual model tree viewers aso used in the model
editors. They are always expanded to ensure that all patches arevisible. Asin the text compare editors, patches are
visualized by colorized highlighted rectangle areas or lines using the same colors. In opposite to the text compare
they are only shown if the patch is selected in the upper structure view. For two-way comparisonsit is ambiguous
which model was changed. Because of thisan additional button isprovided in thetoolbar which allowsto exchange
two models currently opened in the model compare editor. Thisleads from aremove-patch into an add-patch, and
for a change the new and the old value are exchanged.

Themodel compare editor comparestwo model resourceson themodel abstraction layer. Hencetextual differences
may exist between two models where the model compare editor shows no changes. Thus conflicts that would be
shown in atextual compare are not shown in the model compare editor. This allows the user to apply all patches
in one direction as desired and then to override into the other direction.

75

/help/topic/org.eclipse.platform.doc.user/gettingStarted/qs-01.htm

Conflicts

6.6.3. Conflicts

In three-way comparisonsit may occur that an incoming and an outgoing patch conflict with each other. In general
the model compare editor distinguishes between fatal conflicting patches and warning conflicts. In the tree viewer
conflicts are red-colored. A fatal conflict is for example an element change on one side, while this element was
deleted on the other side. One of these patchesis strictly not executable. Usually warning conflicts can be merged,
but it is not sure that the resulting model is patched correctly. Typical misbehaviour could be that some items
are order inverted. To view which patch conflicts with which other path just move the mouse above one of the
conflicting patches in the upper structure view. This and the conflicting patch then change their background color
either to red for fatal conflicts or yellow for conflict warnings.

In general a sophisticated algorithm tries to determine conflicts between two patches. These results are very safe
hints, but 100% safety is not given. For a conflicting or non-conflicting patch it may occur that it can not be
executed. Conflict warning patches may be executed without problems and lead to a correct model change. In
genera the user can try to execute any patch. If there are problems then the user isinformed about that. If there are
problems applying anon-conflicting patch, the editor should be closed without saving and reopened. Then another
order of applying patches can solve this problem. The actions Apply All Changes ... do only apply incoming and
non-conflicting changes. Other patches must be selected and patched separately.

6.6.4. Compare Example

Figure 6.34, “Model Compare Editor” shows an example how amodel compare editor could look like for amodel
that is synchronized with CVS. The upper part showsthe structure view with all patches visible and expanded rep-
resenting the model differences. A CV S synchronize is always athree-way compare. There are incoming changes
(made in the remote CVS model) and outgoing (local) changes. As to see in the figure the incoming changes
have a blue left arrow as icon, while outgoing changes have a grey right-arrow as icon. Added or removed items
have a plus or a minus composed to the icon. Conflicting changes are marked with ared arrow in both directions
displayed only at the element as the patches top level change. In this example a conflict arises at the element
conflicting. In CVS its unique name changed and a relation was added while this element was deleted locally.
Two patches show a red background because the mouse hovered above one of these patches which is not visible
in the figure. Note that the tree viewers in the lower part show only the patches which are selected above. The
colors correspond to the patch direction.

76

Searching in Models

Figure 6.34. Model Compar e Editor

& Variant Management - Three-way compare of 'Weather Station Example/WSLocal.xfm' and "Weather Station Baample/W... — O X
File Edit MNavigate Search Project Proleg Run 0L Window Help

rs - €E W%k Q- ¥~ [5/la@ H @ 0§
Hrroeror i EHL R
£a Compare ('Weather Station Example/WSRemotexfm' - 'Weather Station Example/WSLocal.xfm' - "Weather Station Exam 2 =8 -
2 puresvariants Model Structure Compare Filter: | =)
v (F)# Element Changed: Sensors R E
5 F/# Children QOrder Changed E:_\
o v (F4 Element Changed: WeatherStation =]
== 41 Range to Mandatory Group Added: n
& Fr® Elerment Removed: AirPressure
Fi41 Element Added: French =
v (F4 Element Added: Output
Fi%3 Element Added: XML m
£ Element Added: HTML B
v (F4 Element Changed: Warnings
F/#@ Variagtion Type Changed: psmandatory <= psioptional
@ Default Selected Changed: on <= off
w (F Element Changed: StrongWind <= Gale
@ Mame Changed: StrongWind <= Gale
v (F4 Element Changed: Heat
w (F@ Relations Changes
@3 Relation Removed: Requires: "Temperature” v
purezvariants Model Compare e 5] B <"F_| 4 9
Weather Station Example/W5SLocalxfm Weather Station Example/WSRemotexfm
v 1 (F) WeatherStation v 1 (F) WeatherStation
v 1 (F) Sensors v 1 F) Sensors
~v & (F) Temperature v ¥ F) Temperature
? (F) Color ? (F) Color
¥ (F) AirPressure ® F) WindSpeed
& F) WindSpesd v 1 F) Languages
~v 1 F) Languages & (F) English
& (F English & (F) German
& (F) German & (F) French
v 7 (F) Wamings v 1 F) Output
¥ IF) Gale @& Requires: "Sensors”
F) Heat &) XML
& (F) HTML
w 1 (F) Warnings
¥ F) StrongWind
K (F) Heat
= =

6.7. Searching in Models

6.7.1. Variant Search

Feature and Family Models can be searched using the Variant Search dialog. It supports searching for elements,
attributes, attribute values, restrictions, and constraints.

The Variant Search dialog is opened either by choosing the Search->Variant menu item, by clicking on the
Eclipse Sear ch button and switching to the Variant Search tab, or by choosing Sear ch from the context menu
of the model editor.

77

Variant Search

Figure 6.35. The Variant Search Dialog

& Search O >

57 Variant Search %57 C/C++ Search 47 Git Search 7 Java Search P37 JavaScript Search %7 Plug-in Sez ¢ | *

Search string (*=any string, T=any character):

| “Wheel* v| [Case sensitive
Search Type Limit To
(®) Elements () Attributes (®) All Occurrences
() Attribute Values () Restrictions (O Family Models
(O Constraints () Feature Models
Element Scope Attribute Scope

Unique Name

] Visible Name Constant Calculation

Scope

® Workspace (O Selected resources (C) Enclosing projects

() Working set: | Choose...
l@:‘ Customize... Cancel

The dialog is divided into the following sections.

Search String

The search string input field specifies the match pattern for the search. This pattern supports the wild cards "*"
and"?".

Wild card Description
? match any character
* match any segquence of characters

Case sensitive search can be enabled by checking the " Case sensitive" check box. The settingsfor previous searches
can be restored by choosing a previous search pattern from the list displayed when pressing the down arrow button
of the Search String input field.

Search Type

In thisgroup it is specified what kind of model elementsis considered for the search.

Elements Search element names matching the pattern.
Attributes Search element attribute names matching the pattern.
Attribute Values Search element attribute values matching the pattern.
Restrictions Search restrictions matching the pattern.

Constraints Search constraints matching the pattern.

For refining the search the "Element Scope” group is activated for search type Elements and the " Attribute Scope”
group is activated for search type Attribute Values.

Limit To
This group is used to limit the search to a specific model type. The following limitations can be made.

All Occurrences All model types are searched.

78

Quick Overview

Family Models Only Family Models are searched.

Feature Models Only Feature Models are searched.

Element Scope

Thisgroup is only activated if Elements search typeis selected. Here it can be configured against which element
name the search pattern is matched.

Unique Name Match against the unique name of the element.
Visible Name Match against the visible name of the element.

At least one of the options has to be chosen.

Attribute Scope

This group is only activated if Attribute Values search type is selected. In this group the following refinements
can be made.

Calculations Match against attribute value calculations.
Constants Match against constant attribute values.

At least one has to be selected. To limit the search to values of attributes with a specific name, this name can be
inserted into the Attribute Name input field.

Scope

Thisgroup is used to limit the search to a certain set of models. The following options are available.

Workspace Searchin all variant projects of the workspace.

Selected resources Search only in the projects, folders, and files that are selected in the Variant Projects
view.

Enclosing projects Search only in the enclosing projects of selected project entries in the Variant
Projects view.

Working set Search only in projects included in the chosen working set.

For more information about working sets, please consult the Workbench User Guide provided with Eclipse (
Help->Help Contents, section "Concepts'->"Workbench"->"Working sets").

Search Results

The results of the search are listed in the Variant Search view supporting a tree and table representation and a
search result history. For more information about the Variant Search view see Section 7.4.3, “ Search View ” .

After the search isfinished blue markers are created on the right side of models containing matches. These markers
visualize the matches in the model and provide an easy way to navigate to the matched model items simply by
clicking on a marker.

6.7.2. Quick Overview

Within amodel editor it is possibleto search using the Quick Overview. Especially inlarge modelsit is sometimes
hard to find an element with a known name or a known part of the name. To shorten the navigation through tree
nodes or tables in model editors pure::variants provides a quick overview which you may aready know from
EclipseasQuick Outline. If amodel editor (e.g. aFeature Model Editor) isactivethen pressing the shortcut CTRL
+0 opens a small window with a sorted and filtered list of all model elements. Figure 6.36, “Quick Overview in
aFeature Model” shows an example for the quick overview.

79

/help/topic/org.eclipse.platform.doc.user/gettingStarted/qs-01.htm

Analyse Models

Figure 6.36. Quick Overview in a Feature M odel

WSafm 53
v 1 F) Weather Station
1]
e i ; S: Sen| ¥
v @ Requires: "Wind Speed Sensor”
@ Requires: "Temperature Sensor”
v & (F) Air Pressure Sensor
U (F)Sensors
FRE Temperature Sensor
K (| 3 (F) Wind Speed Sensor
A F
v 1iELa
& F
& F
W ? Fi W
v RE
You can use wildcards *, 7 or camel case
w ¥ (F) Heat

& Requires: "Temperature Sensor”

After the quick overview popped up afilter text can be entered. Shortly after the modification of the filter text
the list of the quick overview will be updated according to the given filter. The filter can contain wild cards like
the question mark ? and the asterisk * as place holders for one arbitrary character and an arbitrary sequence of
characters, respectively. You may also use Camel Case notation. Camel case means that between each capital
letter and the letter in front of it a* wild card is placed internally to the filter text. For example, typing ProS as
filter text would also find elements like Protocol Satistics or Project Settings .

Finaly, if the desired element is shown in the quick overview then a double-click on it lets the editor navigate
to that element. You can also use the arrow keys to select the item from the list and press ENTER to get the
same effect.

Note

The quick overview presentsonly those model objectswhich the active model editor shows. For instance,
if the editor shows relations then the quick overview presents them, too. Additionally the filter set to the
editor has effect to visibility of elementsin the quick overview.

6.8. Analyse Models

Having a configuration space with a lot of variant description models it is very likely, that some of the variants
are very similar or even equal. This section describes tasks, which enable the user to find similar variants and
selection cluster within these variants.

6.8.1. Finding variant description models with similar selections
For finding variant description models with similar selections, pure::variants provides two solutions.

The first one starts with one vdm, selected by the user and calculates the similarity between this base vdm and
all other vdms from the same configuration space. The second possibility isto calculate the similarity between a
selection of vdms from a configuration space.

Finding variant description models similar to one base vdm

To calculate the similarity, between one vdm and the other vdms of the same configuration space, select the base
vdm and start the calculation with the Smilar Variants action in the Model and Variant Analysis sub menu of
the context menu.

80

Finding variant description models with similar selections

Figure 6.37.

w [Vanants
Ankarawvdm
Athendm
Berlin -
Bern., b= '
Dubai Open
#] Hamt -
*
Lond: Open With
Madri Z Open in Matrix e
(2
:1:\33 B Delete
Osloa Refactor ’
Parisa Clene..
Prag.
Rom. E21 Import.
Stuttc . Export...

Wien,
2 Readmedt Rl
W5.ccfm Validate
Whafm

|:5_| Synchronize Models...
Open with Hex Editor

|Tn_| Run JavaScript »
Run As »
o= Qutline & & Debug As , [8
An outline is not avai Profile As N
Coverage As *
Team »
Compare With »
Replace With »
4l Check Spelling in files...
Transferm b
Validate b
|?_| Medel and Variant Analysis > Selection State Analysis
|Tn_| Variant > Element Cluster Analysis
Source) Open Similarity Matrix .
el) Same Selection]
Simnilar Variants
Properties I vomnTo

This opens a dialog, where the input data for the similarity can be configured. It allows the user to select which
inout models and which inout elements shall be used for similarity calculation. Additionally it can be configured
if attributes and instances shall be taken into account.

81

Finding variant description models with similar selections

Figure 6.38. The similarity input configuration dialog

B Select The Similarity Parameters (Model Types and Weights) O X

Select the relevant Models
Feature Models [_]Family Models

Select the Input Information
Feature/Element Selection [] Instances [] Attributes

Use existing model filter instead.

Mo Filter Selected ~

Weight of Models

Weight of Attributes

eyt

A dialog comes up, as soon asthe calculation isfinished. Thisdialog shows all variants of the configuration space
and the similarity to the base vdm in percent. This dialog allows the user to select vdms for further analysis.

Figure 6.39. The similarity calculation result dialog

EI Sirnilar Variants e

Similar Yariants

Similar variants of 'Berlin' l‘_o\J

Select Variant Models

Similarity | Variant Model ~ Select All
vl 100 % Bern
7 91 9 Oelo Deselect All
w1 a7 % Hamburg Invert Selection
w1 87 % Rom
¥ 83 % Madrid
¥ 8% Magdeburg Select VDMs, which
| A3 % Pariz are at least 71%

similar to 'Berlin'.
| 83 % Stuttgart
| 81% # Wien I
A 748 % BEA fithen N
Open Models

Open selected Variant Descirption Models:
In Matrix | | In VDM Editer | | In Compare Editor

C?:' Close

The selected vdms can be opened using one of the buttonsin the lower part of the dialog.
 In Matrix opens the selected vdmsin the matrix editor. An already open matrix editor is reused.

* In VDM Editor opens each selected vdm in a variant description model editor.

82

Finding variant description models with the same selection

* In Compare Editor opens one compare editor for each selected vdm, which shows the compare result between
the selected vdm and the base vdm.

Calculating similarity between multiple variant description models

To calculate the similarity between a selection of variant description models from one configuration space the
action Open Smilarity Matrix in the Model and Variant Analysis sub menu in the context menu is used. This
action starts the calculation of the similarity between all selected vdms. It is also possible to start this action for
the whole configuration space by selecting the configuration space folder. The used algorithm is the same as for
the Same Selection and Similar Variants actions.

Theresult of the calculation is presented in the Smilarity Matrix . Each row shows the similarity values between
the vdm represented by this row and the vdms represented by the columns.

Figure 6.40. Smilarity Matrix

% Variant Projects %2 2b2 ¥ 2 O Similarity Matrix 52
~ [Weather Station Example

= input

= reports

(= script

w [Variants

Ankaravdm Athen
Athenawdm Berlin 1% T9% 100% 1%
Berlin.vdm Bern % T9% 100% 1%
Bern.vdm Dubai 91% | 9% TI% 7%
¥ Dubaivdm
Harmburg.vdm
London.vdm
Madrid.vdm
Magdeburg.vdm
MewYorkwvdm
Oslovdm
[Paris.vdm
Prag.wvdm
Rorm.vdm

Ankara
Athen
Berlin

E
&

Ankara 7% 7% 91%

The Open Compare Editor action from the context menu of one similarity valueis used to have a detailed look on
the differences between the corresponding vdms. This opens the vdms in a compare editor.

With the Export Smilarity Matrix... action from the context menu the similarity matrix can be exported to a
Microsoft Excel document.

Figure 6.41.
I5| Similarity Matrix &3
i b c]
B £ = E 4
I = @ @ a
Ankara 88% 84% 6% 95%
Athen 88% L eT% L 79% | 92%
Berlin 84% 87% Open Compare Editor
Bern T6% T9% | Export Similarity Matrix...
Dubai 95% 92% 80% TT%

6.8.2. Finding variant description models with the same selection

The algorithm, which isused hereisthe same algorithm used in the Smilar Variants analysis. The scopeisjust set
to 100% similarity. The action is used the same way like the Smilar Variant action. Select one base vdm and start
the calculation with the Same Selection action in the Model and Variant Analysis sub menu of the context menu.

83

Find elements with the same selection statesin all variant description models

The same sel ection result dialog comes up, which shows al variants from the same configuration space, that have
the same selections as the base vdm. This dialog allows the user to select vdms for further analysis.

Figure 6.42. The same selection result dialog

131 Same Selection X

Same Selection l_\
Variants with at least the same selection as 'Bern’ ‘O_I

Select Variant Models

| Viariant Model Select Al
| [# Berlin
@ Deselect All
Invert Selection
Open Models

Open selected Variant Descirption Models:

In Matrix | | In VDM Editor | | In Compare Editor

e
'\‘?_,' Close

The selected vdms can be opened using one of the buttonsin the lower part of the dialog.
 In Matrix opens the selected vdmsin the matrix editor. An already open matrix editor is reused.
* In VDM Editor opens each selected vdm in a variant description model editor.

* In Compare Editor opens one compare editor for each selected vdm, which shows the compare result between
the selected vdm and the base vdm.

6.8.3. Find elements with the same selection states in all variant
description models

To find elements, which selection state is equal in all variants pure::variants provides the action Element Cluster
Analysisfrom the context menu of several selected vdms or the whole configuration space folder. Having the same
selection state in al selected variants means, that an element a has the same selection state as element b for all
selected variants. It does not mean, that element aand element b are selected or deselected in all checked variants.
The selection state may change from variant to variant.

This action brings up the input model selection dialog. This dialog alows the user to define the scope of the
analysis. Desglected input models will not contribute to the analysis. The option Include mandatory elements
includes mandatory elementsinto the calculation, since this elements are automatically selected, they areignored
during the analysis by default. Option Use suer selection only causestheanalysistoignore all automatic selections
during the calculation and just consider selection made by an user.

Find elements with the same selection statesin all variant description models

Figure 6.43. The same selection result dialog

& Select Input Models O ot

Select the input models which should be considered for clustering

WeatherStationFeatures
WeatherStationHTMLSources

Select All Dezelect All

Options

[Include mandatory elements [] Use user selections only

3
@ Cancel

The calculation result is presented in the view Element Cluster . Elements, which are having the same selection
statein all vdms are grouped in element cluster. There are 4 types of clusters:

» Thecluster Allways On lists al elements, which are selected in all considered variants.
» Thecluster Allways Off lists all elements, which are never selected in the considered variants.

* The cluster Multi Selection Cluster lists variable elements. A Multi Selection Cluster contains more than one
element.

» The cluster Sngle Selection Cluster lists variable elements. A Single Selection Cluster contains exactly one
element.

Each cluster contains the following informations. The number of elementsin that cluster, shown in brackets after
the cluster name. The elements grouped by the input models and their selector. For each selector the vdm is shown.

Besides the elements for each vdm is shown, if the e ements of that cluster are selected or desel ected.

Hint: pure:variants navigates to the elements in the input models after double clicking on the elements in the
result view.

85

Find constant and variable elementsin al variant description models

Figure 6.44. The same selection result dialog

El Properties LIl Bcokmarks | = Problems |T=_| Element Cluster 7

Always On (B0)
W Multi Selection Cluster 1 (3)
W Elements
WeatherStationHTMLSources (2)
w WeatherStationFeatures (1)
w [F) Color
w || Selection
w v User
Ankara
Dubai
| Unselectian

8 VDMs With Selection (2)
8 VDMs With Deselection (14)
Multi Selection Cluster 2 (2)
Single Selection Cluster 1 (1)
Single Selection Cluster 2 (1)
Single Selection Cluster 3 (1)
Single Selection Cluster 4 (1)
Single Selection Cluster 5 (1)
Single Selection Cluster & (1)
Single Selection Cluster 7 (1)
Single Selection Cluster (1)

For further analysisthe result view provides some actions. For each cluster afilter can be created using the Create
Filter for Cluster Elements action in the context menu on a cluster tree item. This creates a filter, which can be
used in all pure::variants editors to set the focus on the elements of that cluster.

The action Export Result to CSV exports the result data to a csv file, which can be used for further data analysis
outside pure::variants. The same output csv can be created using a transformation. The transformation module is
called Element Cluster Report and has the same options as the dialog described above.

6.8.4. Find constant and variable elements in all variant descrip-
tion models

To find out which elements are variable and which elements are constant in all variants pure::variants provides
the action Selection State Analysis from the context menu of severa selected vdms or the whole configuration
space folder. An element is considered to be variable, if it is at least selected in one vdm and not selected in all
considered vdms.

This action brings up the input model selection dialog. This dialog allows the user to define the scope of the
analysis. Deselected input models will not contribute to the analysis. The option Include mandatory elements
includes mandatory elementsinto the calculation, since this elements are automatically selected, they are ignored
during the analysis by default. Option Use suer selection only causestheanalysistoignoreall automatic selections
during the calculation and just consider selection made by an user.

86

Find constant and variable elementsin all variant description models

Figure 6.45. The same selection result dialog

& Select Input Maodels O x

Select the input models which should be considered for clustering

WeatherStationFeatures
WeatherStationHTMLSources

Select All Deselect All

Options

[Tinclude mandateory elements [T Use user selections only

P

The calculation result is presented in the view Selection Sate Cluster . There are 3 types of cluster:

» The cluster Allways On lists all constant elements, which are selected in al considered variants.

» The cluster Allways Off lists all constant elements, which are never selected in the considered variants.

» The cluster Variable lists variable elements.

Each cluster contains the following informations. The number of elementsin that cluster, shown in brackets after
the cluster name. The elements grouped by the input models and their selector. For each selector the vdm is shown.

In the label of the elements the number of selectionsis shown.

Hint: pure:variants navigates to the elements in the input models after double clicking on the elements in the
result view.

87

Filtering Models

Figure 6.46. The same selection result dialog

=l Properties Ll Bookmarks _[i"'_ Problems |_"-';| Element Cluster |T“_| Selection State Cluster 2

Always On (B0)
v Variable (13)
WeatherStationHTMLSources (4)
v WeatherStationFeatures (9)
~ (F) Air Pressure Senszor (6 times active)
w v Selection
v v User
Londen
Madrid
Magdeburg
Paris
Stuttgart
Wien
| Unselection
Color (2 times active)
English (10 times active)
Gale / Strong Wind (7 times active)
German (B times active)
Heat (9 times active)
Temperature Sensor (15 times active)
Warnings (10 times active)

R I T T T T

Wind Speed Sensor (10 times active)

For further analysisthe result view provides some actions. For each cluster afilter can be created using the Create
Filter for Cluster Elements action in the context menu on a cluster tree item. This creates a filter, which can be
used in all pure::variants editors to set the focus on the elements of that cluster.

The action Export Result to CSV exports the result data to a csv file, which can be used for further data analysis
outside pure::variants.

6.9. Filtering Models

Most views and editors support filtering. Depending on the type of view, thefiltered elementsare either not shown
(table like views) or shown in a different style (tree views). Filters can be defined, or cleared, from the context
menu of the respective view/editor page. When the view/editor has several pages the filter is active for al pages.

88

Computing Model Metrics

Figure 6.47. Filter definition dialog

[2] Filter Properties et

Define Filter

Define conditions and add them to the boolean filter expression

Mamed Filters

Show ps:flag and psflagfile elerments only v|

Define condition

Field Operator Value

Type Ul == ~ | | peflag [[] Case sensitive << Maore

w OR MNew
Type == psflag
Type == psiflagfile Remove
Megate
Move up
Move down

a3)
'\\?,' [] Realtime Preview Cancel

Arbitrarily complex filters based on comparison operations between feature/element properties (name, attribute
values, etc.) and logical expressions (and/or/not) are supported. Comparison operations include conditions like
equality and containment, regular expressions (matches) and checks for the existence of an attribute for agiven el-
ement (empty/not empty). See Section 9.10, “ Regular Expressions” for more information on regular expressions.

Filters can be named for later reuse using the Named Filter field. The drop-down box allows access to previously
defined filters. Fast access to named filtersis provided by the Visualization view, which can be activated using the
Windows->Views->Other->V ariant Management->Visualization item. See Section 7.4.2, “ Visualization View ”
for more information on the view.

6.10. Computing Model Metrics

All pure::variants model editors provide an extensible set of metrics for the opened models. These metrics can be
displayed by choosing Show Metrics from the context menu of amodel editor. If metrics shall be displayed only
for a sub-tree of amodel, the root of this sub-tree has to be selected before the context menu is opened.

89

Extending the Type Model

Figure 6.48. Metricsfor a model

2] Metrics... x

Calculated metrics

For mere information select the metric of your interest.,

&5 Variation count 2,13 E14 A~
@ Attributes 72
& Constraints 0
3 Elements 65
~ "L Model structure
= Average children per element 0.98
= Maximum children per element 18
= Maximum tree depth 4
Relations 0 v

Description

This metric calculates the maximum depth of the model and the average and
maximum number of children per elerment.

Scope
(® Model Scope () Selection Scope

The available metrics are listed in a tree showing the name and overall results of the metrics on top level. Partial
results and detailed information provided by a metric are listed in the corresponding sub tree. An explaining
description of ametric is displayed in the Description field if the name of the metric is marked.

Theradio buttonsat the bottom of the metricsdia og are used to switch between whole model and sel ected el ements
metric calculation. For VDMs, metricsare always cal culated for thewhole model. If aV DM hasnot been eval uated
yet, the calculated metrics may be outdated and can show incorrect values.

Onthe Variant Management->Metrics preferences page (menu Window->Pr efer ences), the set of metricsto
apply can be configured.

6.11. Extending the Type Model

For every project aType Model can be created extending the global Type Model. Thismodel belongsto the project
and can be shared like any other pure::variants model. Thisis an easy and a straight forward way to contribute
own types to be used in the Feature and Family Models of the project containing the Type Model.

To create a Type Mode right-click on a project in the Variant Project View and choose New->Type Model from
the context menu. This creates a new file in the project named like the project and with extension ".typemodel".
Note that only one Type Model can be created per project. The new Type Model is opened in the Type Model
Editor. Thiseditor also isopened by double-clicking on an existing Type Model file (see Figure 6.50, “ Type Model
Editor Example”).

The Type Model Editor consists of two parts. The left part shows the list of types defined in the model, while the
right part provides an editing area for the type selected on the left. Additionally the left part provides a context
menu for adding and removing types of the type model.

The Type Model Editor allows to add element and attribute types. After adding an attribute type the right part
allows to change the Name , Base Type (that is the type which this type is specializing), whether this type is
Abstract (and thus can only be used as base type for other types), and whether this is an enumeration type only
allowing one of the listed values.

90

Extending the Type Model

The editor provides for element types to change the Label , Name and the Base Type . Additionally the element
type may be set Abstract and if there shall be ageneric New Wizard, which would allow to easily create an element

of that type. Since 5.0.9 a custom icon can for element types can be defined. The editor allows to set and delete
custom icons for element types.

The option Show Wizard enables or disables a specific new element wizard for the specified element type in the
model editors. The new element wizard can be found in the context menu: New -> More -> the new element.
We strongly recommend enabling it, if a new element type contains mandatory attributes, since the wizard will
automatically create the attribute for the corresponding element type.

Figure 6.49. Type Model Editor Example

Label: element]
Mame: newelement
Base Type: ps:feature.ps:feature
[] Abstract
B Show Wizard
Select Image ... | Delete Image

For an element type attributes can be created. Those attributes present the default attributes which are defined for
aconcrete element of that type. For each attribute aName, a Type, whether itisaSngle Value , List or Set can be
specified. Following flags can be set for an attribute: Optional (whether this attribute is required for an element),
Fixed (whether it has a constant value or can be overridden in aVDM), Read Only (whether the user can provide
avaluefor it) and Invisible (whether it is visible to the user).

After a Type Model was created or changed, the types defined in the Type Model are immediately available for
modeling in the corresponding project.

Figure 6.50. Type Model Editor Example

& Variant Management - tests.links.linked/tests links.linked.typemodel - Eclipse SDK - O X
File Edit Mavigate Search Project Proleg Run 5L Window Help

Gr-EH@ C WKk Q- ¥~ o % = & =@ s e g
- - fe=1E 4 -
- "2, Variant Projects % 2 5 7 = 0|[#) “Type Model Editor &2 =0 -
i - .
o- v IR ~ Type Model EHements Attribute Type Details =
o= 2 doors =
& ~ [house O N N ib &
housevdm W .ames?ace.newnamespace ame: attributetype =
v (= input v [Attribute Types Base Type: | psistring v E
B doorfiletdt) : m”:’;tetype [Abstract
2 doorfiletruett v £ Element Types [~] Enumeration
v < elementtype =
¥| printinfoxsl o Attribute: el tattributs valuel
2 windowfile.tet rbute: elementatirbute value2
= linkedcs oo
[= output
[Z# rooms

alinkedccfm.ccfm
alinkedfrn.xfm
Doorxfm
housesxfm
Roomudm
&] testslinks.linked typemaodel v
< > Types

ek

91

Using Multiple Languagesin Models

6.12. Using Multiple Languages in Models

pure::variants is able to deal with multiple languages for the visible name of elements and for al descriptions.
This allows to define Feature and Family Models in more than one language.

The default language for models is defined in the preferences on the visualization page. Select Window-> Prefer-
ences... from menu and then Variant Management->Visualization to change it. The default language is used for
all views and editors.

To edit visible names or descriptions for a particular language use the language button (B3 -) in the element
properties dialog asin Figure 6.51, “Language selection in the element properties dialog” . Clicking on the arrow
of that button shows alist of languages currently in use in the model. By selecting a language from that list the
visiblenameand all descriptionsin the element propertiesdial og are shown in that language. Y ou can changethem,
switch to another language and then change them again. pure::variants saves the visible name and all descriptions
for each chosen language. If the desired language is not present in the language list then select the More... item
to chose the language in the upcoming dialog. The selected language will be added to the language list.

Figure 6.51. Language selection in the element propertiesdialog

121 Edit Feature X

Edit "wWind Speed Sensor'

Edit general properties... l‘_O:I

General = Relations Attributes Restrictions Censtraints

Unique ID | iiBSwK-h-iipDy4tU

Unigque Mame | Wind5peed |

Visible Name | Windgeschwindigkeit |

Class/Type | ps:feature | ps:feature v|

OMandator}r OOptional () Alternative ® Or
[Default Selected Range: | [1.n] |

Variation Type

Description

s
Unspecified !
Chinese
English

® German

More...

Note

Thereisalanguage with name Unspecified and abbreviation ?? available. Thislanguage can be used like
others. Typically, it is used when the language of visible names and descriptions do not play arole. After
installation of pure::variantsit is set as the first default language. All texts of old models are treated as
if they were entered for the language Unspecified .

The visible name and the description fields sometimes show texts from another language than the active, usually
with an annotation like [Language: EN] . This occurs when no visible name or description was entered for the

92

Importing and Exporting Models

active language, to point out that there is a text for another language (in the example EN stands for English).
However, simply modify the text to specify atext for the active language. Or, you may replaceit by itstrand ation.

Multiple languages of visible names and descriptions are also supported in the properties view (see Section 7.4.6,
“ Properties View ”) and in the model properties page as well asin the general properties page of a model (see
Section 7.5.1, “ Common Properties Page” and Section 7.5.2, “ Genera PropertiesPage”). Look for the language

button B3 - and use it like described above.
6.13. Importing and Exporting Models
6.13.1. Exporting Models

Models may be exported from pure::variantsin avariety of formats. An Export item is provided in the Navigator
and Variants Project views context menus and in the File menu. Select Variant Resour cesfrom category Variant
Management and choose one of the provided export formats.

Currently supported export dataformatsare HTML, XML, CSV and Directed Graph. The Directed Graph format
isonly supported for some models. Additional formats may be available if other plug-ins have been installed.

HTML export format is a hierarchical representation of the model. XML export format isan XML file containing
the corresponding model unchanged.

CSV, character separated values, export format results in a text file that can be opened with most spreadsheet
programs (e.g. Microsoft Excel or OpenOffice). CSV export respects the filters set in the editor of the model to
export, i.e. only the matching elements are exported. The export wizard permits the columns to be generated in
the output file to be selected.

HTML Export

The HTML Export generates representations for feature and family modelsin HTML. The generated HTML file
can be opened by any browser (e.g. "Internet Explorer", "Firefox", etc.).

The export will generate a navigation section which represents all model elements hierarchical in atree and the
data of the elements on the right side of the generated html page. The navigation tree will help to navigate to
elements quickly. The selected element in the navigation section will be shown on top of the content section. Each
section of an element includes the following paragraphs:

» General Properties

» Description

» Properties

» Relations, Restrictions and Constraints

The General Properties paragraph showsinformation like Unique Name, Element Class, Variation Type, Element
Type and Default Selected .

The following two pictures are showing the HTML Export wizard. The first page enables the user to define an
absolute path for the output file. Using pure:variants path variablesis supported. The style of the html output can
be adjusted individually by referencing your own stylesheet (*.css) either asweb URL or local file. The stylesheset
can either be linked or inlined in the html output file.

93

94

Exporting Models

Figure6.52. HTML Export Wizard

& Variant Export

O =
Export Parameters
(2l
Please enter the parameters and the output file(s) for the export.
Output File:
| ChUsers\Public\WeatherStation.html Browse...

Defines the output path of the generated HTML file.
Embed Stylesheet:

() Mo Stylesheet (®) Inline Stylesheet () Link Stylesheet

Defines if to inline or link the stylesheet. Select 'Inline' to embed the given

C55 stylesheet in the HTML page, otherwise a link to the stylesheet location
is inserted.

Ch\Users\Public\style.css Browse...

Defines the path of the stylesheet.
An URL of a C55 stylesheet to be used for the HTML page.

g < Back Mext = Cancel

Define output path and css file path.

On the second configuration page a filter can be selected, which applies to the selected model. Elements which
apply to the filter are not included in html output. Please see Section 6.9, “ Filtering Models” for further instruc-

tions. To hide specificinformation (e.g. "Restrictions’, " Specific Attributes',...) in the selected model atree layout
can be selected in the combo box Layouts . For further Information see the section called “ Tree Editing Page” .

Exporting Models

Figure6.53. HTML Export Wizard

& Variant Export O X

Layout and Filter Parameters I—\
o
Please select which filter or/and layout should be applied. \J
Filters:

Show only Elements with Description ~

Select the filter, which will restrict the included elements in the generated
HTML file.

Layouts:

Show Mo Properties/Restrictions/Constraints/Relations ~

Select the layout, which defines the element types included in the generated
HTML file. Element types can be 'Restrictions’, 'Constraints’, 'Attributes’ and
s0 on.

/-a.
@ < Back Mext > Cancel

Definefilter and tree layout.

The following stylesheet classes are supported in the HTML Export.

Table 6.3. Table of CSS classes

CSS Class Description

.section All sections including "General Properties’, "Descrip-
tion", "Properties’ and ...

.ps-generd "General Properties’ section placed beneath Feature
headline

.ps-description "Description” section placed beneath "General Proper-
ties"

.ps-properties "Properties’ section placed beneath "Description”

.ps-relations "Relations, Restrictions, Constraints' placed beneath
"Properties’

.ps-breadcrumb Breadcrumb navigation path beneath Feature's headline

.ps-feature Section of a Feature

Isthe html output opened in a browser the following interactions are available:

Breadcrumb navigation placed beneath each element headline to navigate quickly to the parents of the element.

Expand/Collapse tree buttons on the bottom of the navigation on the |eft side of the website to expand/collapse
the navigation tree.

Expand/Collapse model buttons on the right bottom of the website to expand/collapse all element sections.

Expand/Collapse buttons on any element sections and headline to expand/collapse all element sections and
headline of the same type in the whole html document.

95

Exporting Models

» Elements having arelation have a hyperlink to quickly navigate to the related elements.

The following image shows atypical html export.

Figure6.54. HTML Export Result

-] X
‘WeatherStationFeatures X =+
files///C:fUsers/Public/WeatherStation.htm| c Search ﬁ B 4+ & © Q =i
~
Weather Station | eather Statin
- 1 1 sensors
w ! 1. Sensors
- | ® 1.1 Temperature Sensor
? 1.1.1. Color
¥ 1.2 Wind Speed Sensor % 1.1. Temperature Sensor | -al +al
% 1.3 Air Pressure Sensor
1 2 Languages Created by haseeb at Aug 10, 2016 2:46:06 PM . Changed by haseeb at Aug 10, 2016 2:46:06 PM
& 2.1. English Unique Name: Temperature

@ 22 German Element Class: ps:feaiure
Element Type: ps-feature
- |7 3 wamings Variation Type: Or
® 2.1 Gale / Strong Wind Default Selected: off
X 3.2 Heat

Properties

max: 50
warn: 45

HTML Export example.

It isnot possible to export aVariant Description Model using the export wizard as described above. For exporting
avdm atransformation module is used. The transformation is described in the next section.

HTML Transformation Module

For exporting a vdm to a html document the transformation module HTML Transformation Module is used. See
below the module in the transformation module selection dialog.

96

Exporting Models

Figure6.55. HTML Transformation Module

[5] Add Module] *

Available Modules I—\
g

Check the kind of module you want te use for the transformation

Transformation Module

[] & Action List Generator

[] < Action List Runner

[4 Ant Build Module

[] 4 Element Cluster Report

O G'Ex'ternal Program Runner

& HTML Transformation Module
[24 Jav Creates HTML output of Models. Models can be input or transformed models of
O & Ma
[] % ReVersion: 1.1
O @v
[] 4 ¥SLT Script Runner

is AT ST FTOJECT FITETEMETaToT

Enter the name of the module: | HTML Transformation Medule

/—H.
"3) < Back Mesxt > Cancel

Selection of HTML Transformation Module

The next image shows the parameter of this transformation module.

The parameter Output enables the user to define a different output folder, for the result of the HTML transforma-
tion.

The transformation module for HTML has three different modi, called Result Models Tailored , Result Models
Annotated and Input Models Only . The modus is selected with the parameter Mode

The Result M odels Tailor ed mode executes atransformation of on variant description model and will output the
transformed feature and family models as html representation. Each model will generate a single html output file.
The name of thisfile will be the name of the model suffixed with the model type. In this mode only elements part
of the variant will get exported to the html.

The Result Models Annotated mode exports all elements defined in the input models, but it will gray out al the
elements, which are not part of the transformed variant..

The Input M odels Only mode doesn't execute a transformation but exports all input models defined in the used
configuration space. Furthermore are all configuration parameters definable except the filter parameter.

Third parameter Layout is optional. If used it defines a tree layout, which will be used during the transformation.
(the section called * Tree Editing Page”)

Fourth parameter Stylesheet defines whether No Stylesheet isused or if aLink Stylesheet isused, or if alnline
stylesheet is used.

Parameter Stylesheet Path is optional, but needed if Link Stylesheet or Inline Stylesheet was selected. It defines
the path to the local cssfile or aURL to aremote cssfile.

The last two optional parameter allow the user to filter the input models of the configuration space. The Model
TypeFilter allowsthe user to filter the input models regarding their type. Additionally the parameter Model Name
Filter allows the user to specify aregular expression, which is used to filter the models by their names.

97

Exporting Models

Figure6.56. HTML Transformation Module Parameters

2] Add Module] x
Module Parameters
g
Enter values for the parameters of the module
Marme Type Value Add
Output ? ps:path
Mode E ps:string Result Medels Tailored e
Layout ? ps:string
Filter ? psistring
Stylesheet E psistring Mo Stylesheet
Stylesheet Path ? ps:path
Model Type Filter ? ps:string Both
Model Name Filter ? psistring
Merge ? ps:boolean
l@:' < Back Mext > Cancel

Configuration of HTML Transformation Module.

Directed Graph Export

The directed graph export format generates a model graphs in the DOT language and with appropriate tools in-
stalled also images in many other image format such as JPEG, PNG, BMP. This can be used for generation of
images for use in documentation or for printing. If the DOT language interpreter from the GraphViz package (
http://www.graphviz.org/) isinstalled in the computers executable path or the packages location is provided as a
preference (Windows->Preferences->V ariant Management->I mage Export), many image formats can be generat-
ed directly. Thedialog shown in Figure 6.57, “ Directed graph export example” permits many details of the output,
such as paper size or the layout direction for the model graph, to be specified. Graphs for sub-models may be
exported by setting the root node to any model element. The Depth field is used to specify the distance below the
root node beyond which no nodes are exported. The Colored option specifieswhether Feature Model s are exported
with a colored feature background indicating the feature relation (yellow= ps:mandatory , blue= ps:or , magenta=
ps:option , green= ps.alternative). Figure 6.58, “ Directed graph export example (options LR direction, Colored)”
shows the results of a Feature Model export using the Left to Right graph direction and Colored options.

98

http://www.graphviz.org/

Importing Models

Figure 6.57. Directed graph export example

& Variant Export O ¥

Export to Graphviz DOT Language Format (DOT)
Specify the parameters for the export of the model,

Graph Limits

Root Node: | Weather Station | Select...

Depth: | 3 |

Graph Layout

Page Size: | Ad ~ Colored
Quality: | 300 “ [Compact
Orientation Direction
(®) Portrait OLandscape (@) Left to Right OTop to Bottom
Output File: | ChUsers\Publichresult.png | . Browse...
Restore Defaults
P
l\?jl < Back Mext = Cancel

Figure 6.58. Directed graph export example (options LR direction, Colored)

Protokoll
C usB
/ Datentransfer

Ausgabe

~—_s

e Seriell

6.13.2. Importing Models

An Import item is provided in the Navigator and Variants Project views context menus and in the File menu.
Select Variant Modelsor Projects from category Variant Management and choose one of the provided import
sources.

Currently there exists following generic imports which are discussed below:

* Import a Family Model from source directories. Thisimport creates a Family Model or parts of a Family Model
from an existing directory structure of Java or C/C++ source codefiles.

* Import a Feature Model from aCSV file.
» Import a Feature Model from an Excel file.
To learn more about how to import pure::variants server projets, see the documentation pure::variants Server

Support Plug-In Manual. The Following steps explain how to import a Feature or a Family model from a CSV
file accordingly:

99

Importing Models

» Make sure you change the perspective to "Variant Management” or " Variant Projects view" respectively.
* Import item is provided in the Navigator and in the context menu and in the file menu

» ToOpenthelmport Wizard dialog, right click on thefileand select import from the menu option. Select "V ariant
Models or Projects' as shown in the below dialog. Click "next" to continue.

Figure 6.59. Import Dialog

& Import | %

Select N\

Import variant resources into workspace, Press next to specify input and type g 4 5 |
for the import.

Select an import wizard:

type filter text

= General

= C/C++

= CV5

= Git

= Install

= oXygen XML Author

= Plug-in Development

= Run/Debug

(= Tasks

= Team

w (= Variant Management

|T=_L Variant Models or Projects
|T=_L Variant Server Project

= XML

@' < Back Mext > Finish Cancel

» Choose "Import a pure::variants Model from aCSV file" and click "next" to continue.

100

Importing Models

Figure 6.60. Select Variant Import Format

& Variant Import O x

Choose Format

Create purenvariants models from a C5V file

Select a variant import.

& Import a Family Model from source folders
[£] Import a puresvariants Model from a CSV file
:%%2 Import from Excel

' Import frem VEL document

[€] Simple CSV Import Wizard (Example)

® < Back Mext = Finish Cancel

» Sdlect the source file from your local directory and press " next"

101

Importing Models

» Specify the pure::variants model, enter the model name of your choice and press "Finish"

Figure 6.61. Specify Sourcefile

& Variant Import O x
Specify CSV file

CSV source file: |_‘ Tl e s e e\ WeatherStation.csv | | Choose...
Column separator: | H v|
Text separator: | " v|

@ < Back Next > Finish Cancel

102

Importing Models

Figure 6.62. Specify pure::variants model

& Variant Import O X

Specify pure::variants model

Import CSV file as
(®) Feature Model OFamin Model

Enter or select the parent resource:

|sample

=% Conditional Documents Example

=2 Standard Transformation Example

== Vs Project File Example

I£$ Weather Station Example

[=2 XSLT Transformation Example

=% com.ps.pvesdk.examples.import.csv.pvproject
'Lr:? demo

L:? sample

puresvariants model name:

| weatherStation| |

File name:

| weatherStation |

(?;‘ < Back Mext > Cancel

* Theimport is completed successfully and you can now see the imported model as shown in the below figure

Figure 6.63. Imported Feature Model

[# Package Explorer 2 B | @ ~ — 8 weatherStation.fm £
= com.ps.pvesdk.examples.import.csv.pvproject ~ U [F) WeatherMon
= Conditional Decuments Example U {F» DebuggingSupport
2 demo 1 ® Output
v 2 sample 1 iF) Sensors
= Variants

weatherStation.adm

While importing, afew fields are directly used by pure::variants to build the model. Other fields are imported as
attributes to the elements. These fields are:

Table6.4. Import Fields

Unique Name Unique name of an element.
Unique ID Unique Id of an element
Visible Name Visible name of an element.
Variation Type The variation type of an element. Possible values are:

ps:mandatory, ps.optional, ps:or and ps:alternative.
If no variation type is given ps:mandatory is used.

Parent Unique ID The Unique ID of the parent element.

103

Importing Models

Parent Unique Name The Unique Name of the parent element.
Parent Visible Name The Visible Name of the parent element.
Parent Type The Type of the parent element.
Class The class of an element, most likely ps:.feature for

Feature Model or ps.component for Family Model.

Type The type of an element, most likely ps:feature for
Feature Model or ps.component for Family Model.

For importing aCSV to a Feature Model the field Unique Name is necessary. If you like to import a hierarchical
model either the fields Unique ID and Parent Unique ID or Unique Name and Parent Unique Name are
necessary as well. In case of importing an hierarchical model the element without Parent Unique 1D will be the
root element, if no Parent Unique IDs given, the first element without will be the model root.

Please note, the CSV export of pure::variants exports more fields asthe CSV import of pure::variants can import.
Fields such as Relations , Restriction and Constraint are ignored by CSV import. Therefore a full round trip
with the help of the CSV dataformat is not possible.

The third generic import, imports a Feature Model from an Excel file. While importing a few fields are directly
used by pure::variants to build the model.

The Excel file needs a specific structure so pure::variants can interpret the information and generate models auto-
matically from an Excel file. See below example shows this structure.

Figure 6.64. Excel File Structure

A B C D E
1 Variants Indoor Outdoor | Thermometer
2 Debug sample value X \
3 Trace X Named Range
1 QOutput X X - \ Variants
5 LCD X X X
Named Range 6 PCDataTransfer X X
Features
I 7 PCDathganSfer X X ps:altemative
8 PCDaéz-:iflnSfer X ps:altemnative
PCDataTransfer .
9 Protocol Named Range
PCDataTransfer f— Types
Protocol X ps:altemative

10 SyNGoProto
PCDataTransfer

Protocol H X ps:alternative
11} UDPaverSLIPProto
12 Sensors X X X
Sensors
x x X ps:or
13 Pressure
Sensors . . _ osior
14 Temperature
Sensors
; X X psor
15 Wind

All cells named with name "Features' are used as unique names for features during the import. Names, which
contains newlines become hirarchical. Meaning first name is the parent name and names after the newline are
becoming childs of the first feature.

Cells names with "Variants' are considered to define variants during the import. In this example three variants
will be created: Indoor, Outdoor and Thermometer. Those variants will be created in a configuration space named
"Variants'. The Selections are created based on regular expressions, which can configured. By Default "X" and
"x" are considered as selection and "-" is considered to be an Exclusion. All other values become values of an
attribute called "value". Empty cells are considered as unselection of the corresponding element.

The cells of the "Types' named range define the variation types of the cerated features.

104

Importing Models

This table can be alligned vertical or horizontal and all names for the named ranges and regular expressions for
the selections are configurable in the import wizard.

The Following steps explain how to import afeature model from an example excel file accordingly:
» Make sure you change the perspective to "Variant Management” or " Variant Projects view" respectively.
* Import item is provided in the Navigator and in the context menu and in the file menu

» ToOpenthelmport Wizard dialog, right click on thefileand select import from the menu option. Select "V ariant
Models or Projects' as shown in the below dialog. Click "Next" to continue.

Figure 6.65. Import Dialog

& Import | %

Select N\

Import variant resources into workspace, Press next to specify input and type g 5 |
for the import.

Select an import wizard:

type filter text

= General

= C/C++

= CV5

(= Git

= Install

= oXygen XML Author

= Plug-in Development

= Run/Debug

= Tasks

= Team

w (= Variant Management

|T=_L Variant Models or Projects
|T=_L Variant Server Project

[= XML

'i?;' < Back Mext = Finish Cancel

» Choose "Import Feature Model and Variants from Excel" and click "next" to continue.

105

Importing Models

Figure 6.66. Select Variant Import Format

& Variant Import O >

Choose Format

Select a variant import.

[€] Impart a Family Model from source folders
[£) Import a puresvanants Model from a C5Y file
@jlmpurt Feature Model and Variants from Excel

7"\ .
- ac EX INIS anCel
@ < Back Next > Finish Cancel

» Select atarget container and fill in the "pure::variants model name" and the "File name" asfollows. Also, select
the source from your local directory and press "next"

106

Importing Models

Figure 6.67. Select Target and Specify Sourcefile

& Variant Import

Select target and specify source file

a x

l2)

Enter or select the parent resource:

| Weather Station Example

v == Weather Station Example
= .settings
[== CarLightRequirements
[Variants
[= input
= output
(= reports
= script

puresvariants model name:

| SanmpleExcellmport

File name:

| SanmpleExcellmport

Source file: | Chtests'\WeatherStation.xlsx

Browse...

@ < Back Mext =

» The default expressions for the selected, excluded and the value patterns are as follows. The default named
ranges are also set. Here, changes can be done as per the requirement and press "Finish"

107

Importing Models

Figure 6.68. Select Pattern for feature Selection

& Variant Import O x

Excel Import Settings

The Excel import uses names ranges and Java regular expressions to configure the import.

MNamed Ranges

The import from Microsoft Excel uses named ranges to define which cells
of the workbook are considered to be used for feature names and variant names.

Name of the Range for Variants:

| Variants |

Mame of the Range for Features:

| Features |

MName of the Range for Variation Types:

| Types |

Pattern Selection

The selection pattern are used to map the defined cell content to a purezvariants selection state.
Define Java regular expressions for the following selections states.

Selected Features Regular Expression:

(D] |

Excluded Features Regular Expression:
Attribute Value Regular Expression:

Feature Hierarchy

If this option is selected new lines in cell content, which are marked as feature name are
considered as hierachy, Meaning the cell content is split at the new line and the first part
of the string is the name of the parent feature, the second becomes its child.

Consider newlines in Feature Mames as Hierarchy.

e Theimport is completed successfully and you can now see the imported feature model as shown in the below
figure. If variants are defined additionally those modelswill created in a configuration space called "Variants".
Thepicture bel ow showstheimport result of the sample Excel file of picture Figure 6.64, “ Excel File Structure” .

108

Importing Models

2, Variant Projects 52
v (22 Weather Station Example
v [Variants
Indoorvdm
Outdoorvdm
Thermometer.vdm
SampleExcellmport.xfm

Figure 6.69. Imported Feature M odel

VEF
v

onfl ol enf sni

:%:9 ES =0 SampleExcellmportaxfm i3

SampleExcellmport
F) Debug
* value =
Trace
Output
LCD
PCDataTransfer
 (F) USB
& (F) Serial
? F) Protocol
& (F) SyNGoProto
¥ (F) UDPoverSLIPProto
F) Sensors

s T

3 (F) Pressure
& (F) Temperature
K IF) Wind

User-defined import manipulator with JavaScript

(2 Variants 21
§
_ 5] B
g 2|5
Model Elements Level E 6 E
= [ElSampleExcellmport
= I (F)SampleExcell... v v v
= ? (F)Debug 1] 0 O
@ value ‘'sample value' 7 7
? FiTrace 2 | |
? (F)Output 3] =]
? (FLCD 4 | v |
= ? [FPCDataTr.. 5 ¥] b
& FIUSB 5.1 | O =
& (F)Serial 5.2 X] ™
= ? iFProtecol 5.3 v 1 v
& [F)SyM... 5.3.1 [X] O =
@ Fub. 532] Ll ¥
= 7 (FiSensors 6 v v v
K [F)Pressure 6.1] o
R FTempe.. 62 vl v =]
¥ (F/Wind 6.3) O ™

For customization of an imported pure::variants model a JavaScript Manipulator is provided. This manipulator

isavailable for al importer, which support import manipulators.

Figure 6.70. JavaScript Manipulator Wizard Page

& Variant Import O *
JavaScript Rule Set
Choose JavaScript file to perform manipulation
Java Script Manipulation Script
Script File: | S{PROJECT)/manipulation.js | E Browse... ;
Parameter
Name | Add
Param1
Remove
Param2
MNameSuffix _suffix Remove All
Set To Default
@j < Back Finish Cancel

109

External Build Support (Ant Tasks)

On the JavaScript Manipul ator wizard page a JavaScript file needsto be given, which is performed after theimport
is done, to customize the resulting pure::variants model. It is allowed to use pure::variants path variables in the
JavaScript path.

Additionally Parameter for the JavaScript can be defined on this page. Parameters are simple name value pairs.
The JavaScript can also define parameter and default valuesin acomment at thetop of the script. These parameters
are automatically added to the parameters table, if the script is loaded.

Note

An example JavaScript is generated using the "New -> JavaScript Manipulation Script" entry from the
context menu in the projects view. This script shows a basic model manipulation and how parameters
are defined in a JavaScript.

6.14. External Build Support (Ant Tasks)

Eclipse comes with an integrated Ant support. This can easily be used to automate build actions. To integrate
variant management actions into these build processes, pure::variants provides a number of Ant tasks. They can
be used with build files inside Eclipse or in headless mode.

A simple Ant script to trigger a pure::variants transformation looks like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<proj ect nane="exanpl e" defaul t="transforn >
<target name="transforni>
<pv.inport path="C:\Projects\WatherStati on"/>
<pv. transform nanme="Cust onConfi gFi | e" vdm="Weat her Stati on/ Vari ants/Berlin.vdni/>
<ecl i pse. refreshLocal resource="Wat her Station"/>
</target>
</ proj ect >

This script runs the transformation CustomConfigFile on the variant description model Berlin.vdm in project
Weather Station . The transformation will generate some output in the project's directory.

First the pv.import task is used to import the project into the Eclipse workspace if it doesn't exist. Then the
pv.transform task is used to start the CustomConfigFile transformation. And to let Eclipse reload and show the
transformation results in the project directory, the Eclipse Ant task eclipse.refreshLocal is executed as the last
build step.

To run this Ant script, create afile build.xml with the above content in the project directory. Then right-click file
build.xml and choose Run As-> Ant Build... from the context menu.

Figure 6.71. Ant Build Action

= Variant Management - WeatherStation/build.xml - Eclipse Platform

File Edit MNavigate Search Project Run Window Help
[mi] 2 B Q- THI R e
2, Variant Projects 52 = O & buildaml 52 Eerlinvdm
= o

4 [WeatherStation

. (= Seript
gvtﬂp - <pv.transform name: ati
B b::;"m‘ <sclipse.refreshlocal resou
WS.ccfr Mew 3
WSafm
Open
Open With »
% Delete
ey Import..
i Export..
< i, Refresh
(3
o= Outli 55 6 15, gynchronize Models...
% ® Open Javadoc Wizard...
4| eample Run As % 1AntBuild Alt+Shift+ X, Q
Debug As #% 2 AntBuild..

D External Tools Configurations...
e e

Compare With
Replace With

. space-bl

Es\holger\pure-variants-workspace-blog\Weather

Properties
TrranSTorm,

110

External Build Support (Ant Tasks)

To let Ant find the pure::variants provided Ant tasks, the correct JRE needs to be selected. Switch to the JRE tab
and select option Run in the same JRE asthe workspace .

Figure 6.72. Ant Build JRE Parameter

= Edit Configuration s
Edit configuration and launch. [5)

Run 2n Ant build file. .

Mame:

JeatherStation build.xm
(=] Main [Refres|
Runtime JRE:

| @ Run in the same JRE as the workspace

a8 Build [v Targets [&; Classpath [<2> Properties (=4 JRE . g Environment| = Common

Execution environment it

Separate JRE: Installed JREs.

VM arguments:

Working directory:

Default: C:\Users\holger\pure-variants-workspace-blog\WeatherStation

&)
H
|E

Click Run to start the script execution.

The build.xml script can also be executed from outside of Eclipse (so-called headless mode). There are severa
ways to do this. Please note for Linux based operating systems the X Window System needs to be installed and
started. Eclipse will not start if it is not able initialize GTK, which needs the X Window System to be installed
and started.

Y ou can use the Eclipse console application to run the script as follows:

%ECLI PSE% ecl i psec -nospl ash --1auncher. suppressErrors
-application org.eclipse.ant.core. ant Runner
-data C \workspace -buildfile build.xm -DPVLICENSE=C:\pv.de.lic

Thiscommand directly startsthe Ant script runner of Eclipse with the Ant script build.xml , the path to an existing
or temporary Eclipse workspace, and the definition of variable PvLI CENSE pointing to avalid pure::variantslicense
as arguments.

To simplify this, pure::variants comes with two batch scripts located in the cli sub-directory of the pure::variants
installation directory.

» runant.bat starts the given Ant build file with the internal Eclipse Ant runner

runant . bat buil d. xm

* variantscli.bat startsthe given transformation configuration on all provided VDMs

cd Weat her St ati on
variantscli.bat CustonConfigFile Variants/Berlin.vdm Variants/Paris.vdm Vari ants/London. vdm

Both scripts support the following environment variables to configure the execution.

Table 6.5. Environment Variables

Variable Description

PVHOME Path to the ecl i pse sub-directory in the pure::variants installation directory

111

External Build Support (Ant Tasks)

Variable Description
Example: C:\ Program Fi | es\ pure-systens\pv_Enterprise_6.0\eclipse
PVLIC Path to the pure::variants licensefile
Example: C:\pv. de.lic
PVJAVA Path to Java executable
Example: ¢\ Java\ bi n\j ava. exe
PVCONFIG Name of the Eclipse configuration to use
Example: Ant Run

The pvHOVE variable is automatically added to the runant.bat and varianstcli.bat if pure::variants has been in-
stalled using the pure::variants installer executable.

The runant.bat (Windows) and runant.sh (on Linux and Mac) scripts have the following command line param-
eters which must be given in the order they are listed in the following table. Optional parameters can be omitted.

Table 6.6. runant Command Line Parameters

Parameter Description

-l Optional parameter to enable printing the pure::variants and Eclipse logs on exit.
Example: runant . bat -1 build. xm

-t target Optional parameter to run the given target of the Ant script instead of the default target.
Example: runant. bat -t "Transform and Refresh" build.xm

-w workspace Optional parameter to specify the path to an existing Eclipse workspacein which to run the
Ant script. If not given, atemporary workspace directory is created, and deleted on exit.
Example: runant . bat -w C:\wor kspace bui | d. xm

antfile The path to the Ant script to run.
Example: runant.bat "C \Ant Scripts\script5.xm"

vmargs Every argument following the path to the Ant script is passed as command line option to

the Java VM. Please refer to the official Java documentation for the complete list of Java
command line options.

Example: runant . bat “C\Ant Scripts\count.xm" -DFromel - DT0o=100

This command line runs the print_report.xn script with two variables From and
To passed to the Java VM using option -D . The Ant script then could access
these variables using expressions ${Fron} and ${To} . Java transformation mod-
ules and JavaScript scripts run by the Ant script could access these variables using
PVProperty. get PVProperty("Front) and PVProperty. get PVProperty("To") .

Thevariantscli.bat (Windows) and variantscli.sh (on Linux and Mac) scripts have the following command line
parameters which must be given in the order they are listed in the following table. Optional parameters can be

omitted.

Table6.7. variantscli Command Line Parameters

Parameter

Description

Optional parameter to enable printing the Eclipse log on exit.

Example: variantscli.bat -1 Report C \WS\Project\Variants\V5. vdm

112

pv.import

Parameter Description

transformation The name of the transformation to execute (see the section called “ Transformation Con-
figuration Page”).

Example: variantscli.bat Report C \WS\ Project\Variants\V5.vdm

VDM VDM VDM ... |Every argument following the transformation name must be the path to aVDM to trans-
form. At least one VDM must be specified.

Example: variantscli.bat Report C:\WB\ Project\Variants\V5.vdm C:\ W5\ Proj ect
\'Vari ant s\ V6. vdm C: \ WA\ Pr oj ect\ Vari ant s\ V9. vdm

6.14.1. pv.import

The pv.inport task imports a pure::variants project into the workspace. If the project is aready part of the
workspace nothing happens.

Example:

<pv.inport path="C:\Projects\Wather Station" inportreferences="false" />
<pv.inport server="http://pv.server.conl' nane="Wather Station" revision="v2"/>
<pv.inport url="pvrm//pv.server.com projects/igRjtaATGhbnd2t G #v2"/>

Thistask has the following attributes:

» importreferencesif t r ue the references to other projects are also imported (default ist rue) If the referenced
project was stored with arevision, the referenced project isimported in that revision.

* path isthe absolute path to the project in the file system

e server, name, revision are the server URL, the name of the project, and optionally the version of a remote
project to import

 url isthe url of aremote project to import
6.14.2. pv.evaluate
Thepv. eval uat e task performs an evaluation and stores the result in the given result model file.

Example:

<pv. eval uat e vdnm="Weat her St ati on\ Confi g\ I ndoor.vdni" vrne"Wat her Station\Indoor.vrni/>
<pv. eval uat e vdm="Weat her Stati on\ Confi g\ Qut door. vdni vrne"Weat her Stati on\ Qutdoor. vrni>
<property nane="autoresol ve" val ue="ext ended"/>
<property nane="tineout" val ue="120"/>
<property nanme="severity" value="error"/>
<nodel set >
<i ncl ude pat h="Weat her Station\config*.vdn' nature="com ps. consul . nature">
<property nane="nodel HeadProperty" val ue="val ue"/>
</'i ncl ude>
<excl ude pat h="Weat her Stati on*\ Not Sel ect ed. vdm' nat ur e="com ps. consul . nat ure" >
<property nane="nodel HeadProperty" val ue="val ue"/>
</ excl ude>
</ nodel set >
</ pv. eval uat e>

Thistask has the following attributes:
» vdm isthe path to the Variant Description Model to evaluate
» vrm isthe path to the Variant Result Model

» continueOnError If this property is set to true the task does not throw BuildExceptions, but writes problems
to standard out and finishes successfully.

113

pv.transform

Thepv. eval uat e task supports optional properties which influence the evaluation:
» autoresolve set the mode of the auto resolver. Possible values are of f, si npl e, ext ended
* timeout set the maximal time used for the evaluation in seconds

» severity set the minimal severity for problemsto output. Possible valuesarei nf o, war ni ng, er r or . The default
valueisi nfo.

Instead of using the vdm attribute for defining one variant model model for the evaluation the modelset can be
used. It allows to define multiple variant models, which will be run in the context of the same evaluation task.
This simplifies the definition of multiple models with the same evaluation settings.

For defining the modelsthree possibilities exist. A model is part of the model set, if it matches at |east oneinclude
rule, but no exclude rule. If no include rule is defined the model must not match an exclude rule. If neither an
include nor an excluderuleisdefined all modelsare part of the model set. The options can be combined. If multiple
options are used in the same include rule al of the defined options have to match.

 path isthe workspace relative path to the model. The path attribute allows to use wildcards, * for any character
in the same folder and ** for any character including the file separator.

E.g. Weather Station\config* .vdm matches all family models directly located in the config folder in side the
Weather Station project.

Weather Station**.vdm matches al variant models in the Weather Station project, even if they are located in
sub folders.

 nature pure::variants uses natures to identify models imported by a specific importer from a specific external
source. This nature can be used to filter the models.

E.g. com.ps.consul .eclipse.ui.doorsng.syncronizable.nature is the nature for the IBM Doors Next Generation
importer.

 Defining model head properties. Any model property can be used to filter models. The value property isoptional.
If the value is not given the existance of a property with the defined name is sufficient, that a model matches
therule. If the value is given the value also has to match.

6.14.3. pv.transform
Thepv. t ransf or mtask performs a transformation of a Variant Description Model or Variant Result Model.

Example:

<pv.transform vdn="Wat her Station\Config\lndoor.vdni' nane="Default" force="true"
i nput =" C:. / sonmewher e/ i nput" out put =" C: / somewher e/ out put ">
<property nane="autoresol ve" val ue="ext ended"/>
<property nane="tineout" val ue="120"/>
<property name="severity" value="error"/>
<i nput nodel set >
<i ncl ude pat h="Weat her Station*.ccfnl' nature="com ps. consul . nature">
<property nane="nodel HeadProperty" val ue="val ue"/>
</'i ncl ude>
<excl ude pat h="Weat her Stati on\ Not Sel ect ed. ccfni' nature="com ps. consul . nature">
<property nane="nodel HeadProperty" val ue="val ue"/>
</ excl ude>
</i nput nodel set >
<nodel set >
<i ncl ude pat h="Weat her Station\config*.vdnm' nature="com ps. consul . nature">
<property nane="nodel HeadProperty" val ue="val ue"/>
</'i ncl ude>
<excl ude pat h="Weat her Stati on*\ Not Sel ect ed. vdm' nat ure="com ps. consul . nat ure" >
<property nane="nodel HeadProperty" val ue="val ue"/>
</ excl ude>
</ nodel set >
</ pv. transfornm>

114

pv.transform

‘ <pv.transform vrm="Wat her Station\CQutdoor.vrnl name="Default"/>

Thistask has the following attributes:

» vdm isthe Variant Description Model to transform

* vrm isthe Variant Result Model to transform

» name isthe name of the Transformation Configuration (default is Def aul t)

* forceif t rue the transformation runs always also if the result has errors (default isf al se)

» continueOnError If this property is set to true the task does not throw BuildExceptions, but writes problems
to standard out and finishes successfully. (default isf al se)

* input isthe input path the transformation uses. It overwrites the input path defined in the transformation con-
figuration.

 output isthe output path the transformation uses. It overwrites the output path defined in the transformation
configuration.

Thepv. t ransf or mtask supports optional properties which influence the evaluation, which runs before the trans-
formation:

 autoresolve set the mode of the auto resolver. Possible values are of f, si npl e, ext ended (default isext ended)
* timeout set the maximal time used for the evaluation in seconds (default is 120)

» severity set the minimal severity for problemsto output. Possible values arei nf o, war ni ng, er r or . The default
valueisi nf o. (default isi nf o)

The pv. t ransf or mtask support filtering of the input model set. Meaning it is possible to reduce the number of
input models after evaluation for a specific transformation configuration. The definition of input model filtering
isapplied on top of the input model set defined in the used transformation configuration. Thereisno possibility to
add new modelsinto the transformation. It is not allowed to filter feature models from the input model set. Rules
to filter feature models are simply ignored. To define input model filtering the inputmodel set tag is used. It allows
to define multiple include and exclude rules.

An input model is part of the input model set, if it matches at least one include rule, but no exclude rule. If no
include rule is defined the model must not match an exclude rule. If neither an include nor an exclude rule is
defined al input models are part of the input model set.

For filtering the input models three possibilities exist. The options can be combined. If multiple of thisoptions are
used in the sameinclude rule al of the defined attributes have to match.

» path is the workspace relative path to the input model. The path attribute allows to use wildcards, * for any
character in the same folder and ** for any character including the file separator.

E.g. Weather Station*.ccfm matches all family models directly located in the Weather Station project folder.

Weather Station**.ccfm matches all family models in the Wesather Station project, even if they are located in
sub folders.

 nature pure::variants uses natures to identify models imported by a specific importer from a specific external
source. This nature can be used to filter the input models.

E.g. com.ps.consul.eclipse.ui.doorsng.syncronizable.nature is the nature for the IBM Doors Next Generation
importer.

» Defining model head properties. Any model property can be used to filter input models. The value property is
optional. If the value is not given the existance of a property with the defined name is sufficient, that a model
matches the rule. If the value is given the value a so has to match.

115

pv.validate

Instead of using the vdm attribute for defining one variant description model for the transformation the model set
can be used. It alows to define multiple variants description models, which will be run in the context of the same
transforamtion task. This simplifies the definition of multiple variants from the same configuration space with the
same transformation settings. The model set definition has the same options like the input model set definition.

6.14.4. pv.validate

Thepv. val i dat e task runs all available element and models checks on the given model.

Example:

<pv.val i date nodel ="Weat her Stati on\W5. xf m'>
<property name="severity" val ue="warni ng"/>
<nodel set >
<i ncl ude pat h="Weat her Station*.ccfn' nature="com ps. consul . nat ure">
<property nanme="nodel HeadProperty" val ue="val ue"/>
</'i ncl ude>
<excl ude pat h="Weat her Stati on\ Not Sel ect ed. ccfnl' nat ure="com ps. consul . nature">
<property nanme="nodel HeadProperty" val ue="val ue"/>
</ excl ude>
</ nodel set >
</ pv.val i dat e>

Thistask has the following attributes:
* model isthe model to validate
Thepv. val i dat e task supports optional properties which influence the output of the validation:

» severity set the minimal severity for problems to output. Possible values are i nf o, war ni ng, error. (default
iSi nf o)

Instead of using the model attribute for defining one pure::variants model for the validation the modelset can be
used. It allows to define multiple pure::variant models, which will be run in the context of the same validation
task. This simplifies the definition of multiple models with the same validation settings.

For defining the model sthree possibilitiesexist. An model ispart of themodel set, if it matchesat |east oneinclude
rule, but no exclude rule. If no include rule is defined the model must not match an exclude rule. If neither an
include nor an exclude ruleisdefined al modelsare part of the model set. The options can be combined. If multiple
options are used in the same include rule al of the defined options have to match.

 path isthe workspace relative path to the model. The path attribute allows to use wildcards, * for any character
in the same folder and ** for any character including the file separator.

E.g. Weather Station*.ccfm matches all family models directly located in the Weather Station project folder.

Weather Station**.ccfm matches all family models in the Weather Station project, even if they are located in
sub folders.

* nature pure::variants uses natures to identify models imported by a specific importer from a specific external
source. This nature can be used to filter the models.

E.g. com.ps.consul.eclipse.ui.doorsng.syncronizable.nature is the nature for the IBM Doors Next Generation
importer.

» Defining model head properties. Any model property can be used to filter models. Thevalue property isoptional.

If the value is not given the existance of a property with the defined name is sufficient, that a model matches
the rule. If the value is given the value a so has to match.

6.14.5. pv.inherit

Thepv.inherit task changes the inheritance between VDMs.

116

pv.connect

Example:

<pv.inherit vdm="Weather Station\Config\lndoor.vdni>
<super vdm="Weat her Station\ Confi g\ Base. vdni'/>
</ pv.inherit>

Thistask has the following attributes:
» vdm isthe Variant Description Model which inherits (pv.inherit tag), or which isinherited (super tag)
6.14.6. pv.connect

The pv. connect task connectsto a server and login as given user.

Example:

<pv.connect server="http://pv.server.conl' user="exanple" pass="exanple"/>

Thistask has the following attributes:
e server isthe pure:variants server to connect to
 user isthe name of the user

 passisthe password for the user

6.14.7. pv.sync

The pv. sync task updates a model imported by a connector. The connector specific synchronization job is called
to update the models data.

Example:

<pv. sync nodel ="Weat her Stati on\ Sources. ccfni'/>

Thistask has the following attributes:

» model isthe model to update

6.14.8. pv.syntaxsemanitccheck

Thepv. synt axsemani t ccheck task checksthe given configspace for semantic and syntactic errors. Thisisrunning
the same checks as the Perform Syntax and Semantic Check action on configuration spaces.

Example:

<pv.synt axsemani t ccheck confi gspace="Wather Station\Variants" reportfil e="Wather Station
\ CheckResul t. htm " />

Thistask has the following attributes:
» configspace isthe configuration space to be checked.

* reportfile the location the resulting report is stored.

6.14.9. pv.mergeselection

The pv. ner gesel ect i on task creates or updates a variant description model by merging all selections from the
given variant description models. The following rules are applied. If an element is excluded in at |east one source
model the element is also excluded in the result. If an element is selected in at least one source model it is also
selected in the result if not excluded by any other source model.

Example:

117

pv.javascript

<pv. nergesel ecti on vdm="Weat her Stati on\ Confi g\ Mer ged. vdni >
<source vdn¥"Weat her Stati on\ Confi g\IndoorBase. vdni'/ >
<source vdn¥"Weat her Station\Confi g\ TenpOnly. vdni'/>
<source vdn¥"Weat her Stati on\ Confi g\ ConmJSB. vdni'/ >

</ pv. ner gesel ecti on">

Thistask has the following attributes:

» vdm istheresult model (pv.mergeselection tag) or the source model (source tag)

6.14.10. pv.javascript

Thepv. javascri pt task performsagiven javascript in aspecific context. Thisallowsthe user to automate existing
javascripts. The script can be performed in the context of one model or in the context of one project. If both a
project and amodel is given, the model is used for the context.

Example:

<pv.javascript script="C:\Tenp\javascript.js" project="\Wather Station"
nodel =" $(PROJECT) \ Sour ces. ccfmi' />

Thistask has the following attributes:
 scriptisthe pathto the performed javascript. Thispath hasto be absolute or relativeto theused ANT workspace.
» model isthe path to the context model. This property is optional. Variant path variables can be used here.

 project isthe path to the context project. This property isoptional. Variant path variables can be used here.

6.14.11. pv.offline

Thepv. of f 1 i ne task switches the server project into offline mode. The project is selected by the name attribute.
Thistask does nothing if the project is aready offline or if the project isalocal project.

Example:

<pv.offline name="Weat her Station"/>

Thistask has the following attributes:

* name isthe name of the project

6.14.12. pv.online

The pv. onl i ne task switches the server project into online mode. The task performs a "Override and update” if
there are differences between the remote project and thelocal representation. Meaning thelocal dataisoverwritten
with the current state of the project on the pure::variants Server. The project is selected by the name attribute. This
task does nothing if the project is aready online or if the project isalocal project.

Example:

<pv.online nanme="\Weat her Station"/>

Thistask has the following attributes:
» name isthe name of the project
6.14.13. pv.userrolesync

Thepv. userrol esync task is used to synchronize users and roles of apure::variants model server with their data
sources (e.g. LDAP directory servers).

Example:

118

pv.property

<pr oj ect >
<property name="server" value="http://server:1234"/>
<pv.connect server="${server}" user="adm n" pass="123"/>
<pv.userrol esync server="${server}" usernane="cn=reader, dc=conpany, dc=conm' passwor d="456">
<rol e nanme="Model er"/>
<rol e nanme="User"/>
<rol e name="Tester"/>
<user name="*"/>
</ pv. userrol esync>
</ proj ect >

Thistask has the following attributes:

* server isthe pure:variants model server

» usernameisthe name of the data source user (e.g. an LDAP bind user)
» password isthe password of the data source user

The users and roles to synchronize are listed using user and role elements. Both elements have the attribute name
which specifies the name or aname pattern for the users or rolesto synchronize. The name can contain the special
characters"*" to match any text and "?' to match a single character.

If the data source of a user or role to synchronize is a server that uses a certificate which is not trusted by
pure::variants, then the synchronization with that data source server will fail. To register this certificate with
pure::variants, start pure::variants and open the User Management of the pure::variants server (see "pure::variants
Server Administration Manual" about details on how to do this). Then try to synchronize the same users and roles
from within pure::variants. Y ou will be asked by pure::variants to accept the certificate of the data source server
permanently. After you agreed, run the Ant task again. It will not fail anymore due to an untrusted certificate.

6.14.14. pv.property

Thepv. property task isused to define aruntime property, which can be used in several pure::variants connectors.
For example runtime properties are used for defining user credentials for external tools used by some connector
transformations.

Example:

<pr oj ect >
<pv. property nanme="propertyNanme" val ue="property val ue" />
</ proj ect >

Thistask has the following attributes:
* nameisname of the property to set

 valueisthe value of the property to set

6.14.15. pv.about

The pv. about task lists the pure::variants environment including the installed pure::variants features and infor-
mation about the used Eclipse and Java version.

Example:

‘<pv.about/>

Thistask does not support attributes:

6.15. Linking between pure::variants and external resources

pure::variants model objects can be linked with any external resource in both directions. To create alink to an
external resource inside a pure::variants object's HTML description, use the "Insert/Edit Link" (==) action in

119

Manipulating Text Files

the description editor to add the link location to your description. Alternatively you can also drag an URL and
drop it directly into the editor or on the model element. All links from the description of the selected element are
shown in the Relations View.

Figure 6.73. Relations View with external Links

—
-]
=

o Result =8
Bled 7

Relations 7

F' Reduced Low Beam

F! Separate DRL Lights

v @3 Links (3]
) CarlightRequirements (16)
0y CarLightRequirements (17)
) CarlightRequirements (18)
0y CarLightRequirements (9]
& DRL Definition

w Parent (1)

F! External Car Lights Features

A doubleclick on alink resultsin navigating to the link's destination if alink hander isregistered for the respective
link type.

To support linking in the inverse direction, pure::variants model elements can also be accessed by URL links.
To get a model element's URL use the "Copy URL" context menu action on that element. The URL is made
available in the Clipboard and can be pasted into any other resource or application. If external applications are
able to handle drop events, a simple drag of the model element with the mouse and dropping it on the external
application will work too.

The pure::variants installer for Windows will setup a link handler, which allows direct navigation from exter-
nal applications to the linked pure::variants model element. However, the handler only works if an instance of
pure::variants is running and the linked model element is available in the currently used workspace.

6.16. Manipulating Text Files

The pure::variants standard transformation can be used to manipulate text files based on pvSCL conditions and
calculations. To achieve this, the transformation and family model needs to be set up for transforming a text file,
and the file needs to be annotated with pvSCL conditions and cal culations.

6.16.1. Setting Up the Transformation

For setting up the standard transformation, please refer to the section called “ Setting up the Standard Transforma-
tion” . Now the text file to transform still needs to be referenced. Thisis done in the family model. Figure 6.74,
“Family Model with ps:pvscltext transformation setup” shows an example family model referencing the input file
"Conditional PV SCLText.txt". To create the necessary family model elements, the easiest way is to use awizard.
To do this, add an element of class ps:part to the family model and select "New"->"PVSCL Conditional Text"
from the part's context menu. Please refer to Section 9.5.7, “ ps.pvscltext ” , for details about supported attributes.

Figure 6.74. Family M odel with ps:pvscltext transfor mation setup

*Conditional Documents Example.ccfm &3 =B

~ 1@ Conditional Documents Bxample
v ? B Conditional Documents
v 7 @ psidecument: Conditional PVSCL Text Example
v 7 (5] ps:pvscltext Conditional PYSCL Text Example
o file = 'ConditionalPVSCLText b’
Fo o
@ dir=",

Tree| (5] Table| 23 Graph | 4 Constraints

120

Editing Conditions and Calculationsin Text Files

6.16.2. Editing Conditions and Calculations in Text Files

Conditions and calculations are added to the text file as special statements, such asPVSCL: | FCOND(pvSCL condi \
tion) OF PVSCL: EVAL(pvSCL cal cul ation) . See Section 9.5.7, “ ps.pvscltext ” for alist of all statements and
asmall example text document.

To edit conditions and calculations, use the actions "Add PV SCL Condition” ('), "Add PV SCL Calculation” (

), and "Edit PV SCL Condition/Calculation” ('), which are available in the toolbar. These actions give you
the same support in writing pvSCL rules as already known from editing restrictions or constraints.

For adding a condition to a section of your text, mark a section of your text and press ' . Now a pvSCL editor
opens, in which you can write the pvSCL rule that should apply to this text section (see Figure 6.75, “Editing
pvSCL conditions or calculations’). For using auto-completion, syntax highlighting, and error checks, the editor
still needs to know the pure::variants project, in which context the written rule should be evaluated. Therefore,

select the context model by pressing [l . Only feature models are allowed as context model. However, all other
models of the same and referenced projects are considered automatically. After pressing "OK", the new condition
iswrapped around the selected text.

Adding a calculation to your text works in a similar way. Press 4 and use the pvSCL editor to write your rule.
After closing the editor, the marked text is replaced with the calculation.

Toedit an existing condition or cal culation, movethetext selection to aplaceinsidethe calculation or condition and

press '# . For conditions, any place between the beginning of PvscL: | FCOND(and the beginning of PvSCL: ENDCOND
isok. For calculations, any place between the beginning of PvscL: EvAL(andtheclosing) isaccepted. If acondition
or calculation is found at your current text selection or caret position, the pvSCL editor opens, and you can edit
your rule.

Figure 6.75. Editing pvSCL conditionsor calculations

121 Edit Condition X

Edit the condition
(2l
Edit pv5SCL language conform expression. Use CTRL+5pace to activate auto
completion,

Context Model: |WeatherStation |

Restriction | pwscl Return type:

Temperature OR WindSpeed

P

6.17. Using Known Servers Preferences

Known servers can be organized from Window-> Preferences->Variant Management->Known Servers in
pure::variants. Known servers are used by many connectors. This page provides an organized view and actions
for servers of the corresponding connectors. The known server table has following components.

Category Each existing connectors are represented as categories. Categories have unique ID and name. It is
possible to see the ID by hoovering mouse pointer on any category.

121

Central deployment mechanism of servers

Server Servers are shown under each corresponding connector categories. Each server has a name and an

URL. More information of the server can be viewed through tooltip.

Figure 6.76. Known Servers page

& Preferences O -
type filter text Known Servers - - v
Install/\lpdate Defined Server Locations
lava
JavaSeript Mame - Server Add..
Myhyn - [5] purevariants Model Server
alygen XML Author & Central deployed server hitps//127.0.0.0:2288 Ed
Plug-in Development 3] PV Model Server hitped/linusbuild: 8080 A
Report Design .)
, 3] Uncategorized Server
Run/Debug Password
SWTEBot Preferences
Team
Termimal Import
Validation
w Yariant Management |EE
Connector Preferen:
Image Export
Known Servers
Metrics
Model Handling
Medel Validation
puresvariants Licens
Relation Indeser
SDK Preferences
= Visuzlizaticn 5 M Restore Defaults Apply
2

The following actions can be performed on the list.

* Add: The Add button only enables when a category is selected. To add a server, select any connector category,
then click Add . A dialog box will open, enter server name in Name text box and server URL in URL text box.
Press OK to add the server into the category.

If the server failsto connect, a Save anyway dialog will open if user want to keep it.

 Edit: The Edit button enablesif any server is selected. A server name or URL can be modified by clicking Edit
button. A dialog box pops up where changes can be made.

* Remove: To remove aserver from any category, select it from the list and press Remove button.

» Password: Password change is only available for servers which are in pure::variants Model Server category.
To change the password of such server, press Password button.

* Import: Servers from aexternal XML file can be added to their corresponding categories. Use Import button
to perform an import. Theimport XML has to have the similar structure as central deployment XML.

An example is shown in Central deployment XML structure [123]

» Export: The list of all categorized servers can be exported to an XML file. By clicking Export , a save file
dialog will open to create the XML file in prefered location.

6.17.1. Central deployment mechanism of servers

The predefined XML file with categorized servers can be stored in file named "pv.serversxml" on "C:\Program-
Data\pure-variants-5" directory for central deployment of servers with user's choices of category/categories. An
example XML is shown in Central deployment XML structure [123] .

Note

To create such an xml file for central deployment we recommend using the known servers preference
page. All necessary Server should be added on that page. Afterwards just export the server list and deploy
the resulting XML file.

122

Central deployment mechanism of servers

These servers can not be edited by the user and will be shown in their corresponding connector categories with
"lock" (&) decorated icons. For example, a pure::variant model server from central deployment file would look
like ().

Category |Ds are mandatory for central deployment XML. pure::variants connectors of corresponding server cat-
egories are using category |Ds with the following schema: We take the feature ID of the connector and replace
"pure-variants" with "servercategory".

Example: For connector with ID com.ps.consul.eclipse.pure-variants.toolxyz the category ID
com.ps.consul.eclipse.servercategory.toolxyz is used.

There are some categories which do not follow this schema:

Note

User can have proposal for pure::variants Floating License server in Window-> Preferences-> Variant
Management-> pure::variants License-> License Server by adding a License category server in the
central deployment file. The pure::variants Floating License Server category is not shown in Known
Servers preference page but can be used from central deployment file.

Table6.8. Table of server category IDs

Server Category Name Server Catagory |D
pure::variants Model Server com.ps.consul.pvserver.model
pure::variants Floating License Server com.ps.consul.pvserver.license
Uncategorized Server com.ps.consul.pvserver.unknown.category

The structure of the central deployment server xml fileis:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<servers>
<server nane="Nane of the server 1"
descri ption="Description of the server 1"
category="1D of the category"
url ="URL of the server 1" />
<server nane="Nane of the server 2"
descri ption="Description of the server 2"
category="1D of the category"
url ="URL of the server 2" />

</ servers>

Name, category and url are mandatory. The description is optional.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<server s>
<server nane="PV Mdel Server"
description="This is an exanpl e server"
cat egory="com ps. consul . pvser ver. nodel "
url ="http://127.0.0.1: 4711" />
<server nane="Anot her Mdel Server"
cat egory="com ps. consul . pvser ver. nodel "
url ="http://nodel . server.| ocal : 8080" />
</ server s>

Note

Eclipse restart is required to reflect the modification of central deployment file.

123

Convert a pure::variants 4 project into a pure::variants 5 project

6.18. Convert a pure::variants 4 project into a pure::variants 5
project

To enable some new pure::variants features a pure::variants project with version 5 is necessary. All newly created
pure::variants projects are created with version 5. An existing project created with an older pure::variants release
can be converted to a pure::variants project with version 5.

To convert a project open the properties dialog on the pure::variants project. Select Project Version in the nav-
igation on the left side of the properties dialog. The selected page now shows the current project version along
with some additional informaton. The conversion is started with the Convert to Version 5 button at the bottom
of the page.

Note

After converting a pure::variants project to version 5 it can not be converted back to version 4. The
converted pure::variants project is not compatible to pure::variants releases prior to 5.0.0.

Figure 6.77. pure::variants Project Version

£ Properties for JavaScript Transformation Example | X
type filter text Project Version =T T
Resource
Builders The version of the puresvariants project determines the capabilities available in this
JavaScript project. & puresvariants project version 3 enables two new capabilities.
Project Natures The partial evaluation mode, see section "Partial Evaluation” in the puresvariants
Project References User's Guide for more information.

|T=J Project Version
Refactoring History
Run/Debug Settings
Task Tags
Validation Your current pure:variants project version is 4.

The second new capability is the improved Inhentance, see section "Inhertance of
Vanant Descriptions” in the puresivanants User's Guide for more information,

The conversion of the project will change all models of the project and can not be reversed.

Convert to Version 5

Restore Defaults Apply

|f?:| Apply and Close Cancel

If the project to convert has references to other pure::variants projects in the workspace, the user will be asked
if the referenced projects shall be converted as well. Chose Yes to convert all referenced projects together with
theinitial project. If the

6.19. Customizing the Variant Configuration Process

As of pure:variants 5, it is possible to customize the variant configuration process with the help of a Variant
Configuration Wizard. A configuration space that is intended to use a Variant Configuration Wizard has to be

124

Creating a Variant Configuration Wizard Model

configured with aVariant Configuration Wizard M odel . Seethe section called “ Guided Variant Configuration
" for detailed information about the Variant Configuration Wizard.

This section describes how to create and configure the Variant Configuration Wizard Model.
6.19.1. Creating a Variant Configuration Wizard Model

Start the New Variant Configuration Wizard Model (VCWM) wizard from the New menu of the context menu
inthe Variant Projects view. The following wizard opens. On the first page select atarget container and define
the name for the new Variant Configuration Wizard Model.

Figure 6.78. New Variant Configuration Model

& New Variant Configuration Wizard Model O x

Variant Configuration Wizard Model

Create a new Variant Configuration Wizard Model.

Enter or select the parent resource:

| Weather Station Example |

v 22 Weather Station Example 2
(= .settings
= Variants
[= Input
[= output
(= reports
[= script

Variant Cenfiguration Wizard model name:

[Wizard| |

File nare:

[Wizard |

':?3' < Back Mext > Cancel

Thewizard can be finished now and the new Variant Configuration Wizard Model will be created. Using the Next
> button instead switches to the next page where it is possible to select the configuration spaces to which the new
model will be added automatically. The page lists configuration spaces from the target project and all projects
which reference the target project. The configuration spaces to which the Variant Configuration Wizard Model is
added can also be changed later on. See the following section for more information on how to do that.

125

Creating a Variant Configuration Wizard Model

Figure 6.79. Add the new Variant Configuration Model to Configuration Spaces

& New Variant Configuration Wizard Model O x
Configuration Spaces of Referencing projects

)

Select Configurations Space(s) in which the model to be added

Enter or select the parent resource:

| Weather Station Example\Variants |

v 122 Weather Station Example
= .settings
[Variants
[= input
= output
= reports
[= script

'(?3' < Back MNext > Cancel

Adding the Variant Configuration Wizard Model to a Configuration Space

To add a Variant Configuration Wizard model to a configuration space, open the properties of the configuration
space and navigate to the Configuration Wizard tab. The Variant Configuration Model is selected with the

Browse ... button. The Clear button allows the user to remove a Variant Configuration Model from the confgu-
ration space.

Figure 6.80. Add a Variant Configuration Model to a Configuration Space

& Properties for Variants O *
| type filter text | Configuration Space [=1h g v 8
Resource

Specify the Variant Configuration Wizard settings model.
@l Configuration Space pecify < <

O (Files and Folders) Model List Configuration Wizard Input-Output Transformation Configuration
Run/Debug Settings
Table Resize Test
Tree Resize Test

AVariant Configuration Wizard (VCW) provides a guided variant configuration. The wizard's behavior is defined by the VCW settings
model specified below.

AVariant Configuration Wizard tab appears automatically when opening a VDM once a VCW settings model has been added here.

For more details see section "Configure the Variant Configuration Wizard” in the pureivariants User's Guide.

Variant Configuration Wizard settings model: | /Weather Station Example/wizard.vewm Browse... Clear

Restore Defaults Apply

(?3' Apply and Close Cancel

126

Configure a Variant Configuration Wizard Model

6.19.2. Configure a Variant Configuration Wizard Model

The Variant Confiuration Wizard Model provides options to configure the Variant Configuration Wizard. These
options are configured in the Variant Configuration Wizard Model editor. The editor is divided into 3 sections, the
General Wizard Setting section at the top, the Start Page Section in the middle and the Finish Page Section
at the bottom of the editor.

The General Wizard Settings section defines the configuration step wizard pages that will be displayed on the
left side of the wizard. The pages can be defined in two ways. The first way is to select the Root of Wizard
Pages using the Set button. All direct children of this element are automatically added as configuration pages. The
resulting wizard pages are listed in the table below. Sorting or removing them is not possible. The Clear button
removes the selected root element. If aroot element is already defined, clicking Clear will discard al previously
defined Wizard Pages .

The second way to define the wizard pages is to select the defining elements manually. Use the plus icon next to
the table to add wizard pages. Each entry in the table will be one wizard page in the wizard. The order in thetable
is also the order of the pagesin the wizard. The table alows to sort the entries using the up and down buttons as
well as to remove elements using the x button.

The right side defines general options for the wizard's behavior. If the first option is enabled the wizard automat-
ically excludes all non-selected elements when the user switches from one wizard page to the next. This prevents
the auto resolver from automatically selecting elements (based on rule knowledge from the input models) whose
configuration was already completed in a previous configuration step.

The second option in the right half of the General Wizard Settings section enables or disables the navigation
part of the Variant Configuration Wizard. If this option is selected, the resulting wizard will show the list of
configuration steps. Otherwise, the configuration steps will be hidden.

Finaly, if more than one wizard theme is available, then the desired theme can be selected with the combo box
of the third option.

Figure6.81. VCWM Editor General Settings Section

=] Wizardvewm 52 =
Variant Configuration Wizard Settings

v General Wizard Settings

Root of Wizard Pages: | | Set | | Clear Options

Automatically excluded unselected choices on a page when switching to
- X the next wizard page.
Wizard Pages | e

This ensures that finished wizard page decisions can not be changed by
autoresolving dependencies based on information from pages configured
F) Color later,

F) Sensors

1

2

3 EL
anguages Show all wizard steps on the left side. The active step is highlighted.

4

F) Warnings

The wizard supports different themes for visualization. Please select the theme
to use.

Eclipse Theme v

The Start Page Settings section defines the user message and the page title on the |eft side. The right side of the
section defines which start page options will be available on the start page and, if more than one mode is selected,
the default mode needs to be specified.

Selecting Enablereview mode enables the review mode. Thisisthe default start mode of the wizard, but this can
be changed by the user, if at least one other start mode is available.

127

Configure a Variant Configuration Wizard Model

Figure6.82. VCWM Editor Start Page Section

~ Start Page Settings

Start Page Title

B 7 U &

Use this wizard to configure our famouse weather station.

Options

The wizard supports different configuration start modes. Please choose the
available wizard configuration start modes. If multiple start modes are enabled
chose the default configuration start mode.

Mode Default
[Start Configuration from Scratch ()
[] Resume Configuration O

Enable review mode, which allows the user to cycle through the pages
without making any changes.

The Finish Page Settings section defines the user message and the title of the final wizard page, as shown in
the list of configuration steps on the left side. The right side of the Finish Page Settings section defines which
finishing options will be presented to the user on the finish page and which one is the default. Three options are
available. Finalize Configuration , Lock Configuration and Disable Wizard . The meaning of each of these
options is explained on the right side of the Finish Page Settings section (see Figure 6.83, “VCWM Editor Finish
Page Section”). The combo boxes below each option alow to choose if and how an option is presented on the
wizard's finish page. The choices are Disabled by default , which means that the option is disabled on the finish
page but the user can select it, Enabled by default , which means that the option is enabled on the finish page but
the user can desdlect it, Always disabled , which means that the option is disabled and not shown on the finish
page and, finally, Always enabled , which means that the option is enabled and not shown on the finish page.

Figure 6.83. VCWM Editor Finish Page Section

~ Finish Page Settings

Finish Page Title

B I U &=

= =1 i=

You are finishad now. Start with production of the weather station,

A2 n

Finalize Configuration

Automatically derived decisions and values become user decisions and values.

These can only be changed through explicit user activity, not by the automatic
resolving.

Disabled by default (User can enable on finish page)

v
Lock Configuration
All user decisions will be locked and cannot be changed later.

Disabled by default (User can enable on finish page) v

Disable Wizard

Disable the Variant Configuration Wizard at finish. The wizard will not be shown
when opening the variant model again.

Disabled by default (User can enable on finish page) v

128

Chapter 7. Graphical User Interface

The layout and usage of the pure::variants User Interface closely follows Eclipse guidelines. See the Workbench
User Guide provided with Eclipse (Help->Help Contents) for more information on this.

7.1. Getting Started with Eclipse

This section gives a short introduction to the elements of the Eclipse Ul before introducing the pure::variants Ul.
Readers with Eclipse experience may skip this section.

Eclipse is based around the concepts of workspaces and projects . Workspaces are used by Eclipse to refer to
enclosed projects, preferences and other kinds of meta-data. A user may have any number of workspaces for dif-
ferent purposes. Outside of Eclipse, workspaces are represented as a directory in the file system with a subdirec-
tory .meta-data where all workspace-related information is stored. A workspace may only be used by a single
Eclipse instance at atime. Projects are structures for representing a related set of resources (e.g. the source code
of alibrary or application). The contents and structure of a project depends on the nature of the project. A project
may have more than one nature. For example, Java projects have a Java nature in addition to any project-specific
natures they may have. Natures are used by Eclipse to determine the type of the project and to provide specialised
behaviour. Project-specific metainformation is stored in a.project file inside the project directory. This directory
could be located anywhere in the file system, but projects are often placed inside a workspace directory. Projects
may be used in more than one workspace by importing them using (File->1mport->Import Existing Project).

Figure 7.1, “Eclipse workbench elements’ shows an Eclipse workbench window. A perspective determines the
layout of thiswindow. A perspective is a (preconfigured) collection of menu items, toolbar entries and sub-win-
dows (views and editors). For instance this figure shows the standard layout of the Resource perspective. Per-
spectives are designed for performing a specific set of tasks (e.g. the Java perspective is used for developing Java
programs). Users may change the layout of a perspective according to their needs by placing views or editorsin
different locations, by adding or closing views or editors, menu items and so on. These custom layouts may be
saved as new perspectives and reopened later. The standard layout of a perspective may be restored using Win-
dow-> Reset Perspective .

Editors represent resources, such as files, that are in the process of being changed by the user. A single resource
cannot be open in more than one editor at atime. A resource is normally opened by double-clickingonitin a
Navigator view or by using a context menu. When there are several suitable editors for a given resource type
the context menu allows the desired one to be chosen. The figure below shows some of the main User Interface
elements:

Figure 7.1. Eclipse wor kbench elements

£ Resource - Eclipse SDK —] ®
File Edit Navigate Search Project Prolog Run SOL Window Help
- € ®® Q- & - - - - - E¥ [Resource’
[Project Explorer i =0 = Name of
0& < current
=2 Hierarc hical Variant Example perspective
navigator 2 WeatherStationExample
View 1 Weather Station Example
1Y
5% utline 5 =5 \

An outline is not available.
1 Editor Area I
) Tasks 52 =0
/ ! Description Resource Path Location Type
QOutline
View

0 items selected

Eclipse uses Views to represent any kind of information. Despite their name, data in some types of view may be
changed. Only oneinstance of a specific type of view, such as the Outline view, may be shown in the workbench
at atime. All available views are accessible via Windows->Show View->Other.

129

/help/topic/org.eclipse.platform.doc.user/gettingStarted/qs-01.htm
/help/topic/org.eclipse.platform.doc.user/gettingStarted/qs-01.htm

Variant Management Perspective

7.2. Variant Management Perspective

pure::variants adds a Variant Management perspective to Eclipse to provide comprehensive support for variant
management. This perspective is opened using Window->Open Per spective-> Other->Variant Management . Fig-
ure 7.2, “Variant management perspective standard layout” shows this perspective with a sample project.

Figure 7.2. Variant management per spective standard layout

& Variant Management - Weather Station Example/Variants/Berlin.vdm - Eclipse SDK — O =
File Edit Mavigate Search Project Prolog Variant Run SQL Window Help

- C ® & Q- 5 - E%'| |_§J =~ A A [T A B |Tn_| Variant Mana...

| &0 Co8b| & 2 &

&, Variant Proje 22 =0 Berlinawvdm 7 =0 Relations | 55 Result 52 =0
& T v] Fn Weather Station _ =i -
v (2% Weather Station Example 2 v ﬁ B Sensors w (F Weather Station ~
= input v vk Languases w (F) Languages
(= reports E3@) English F! German
(= script '?ﬂ@ F G.erman = ~ (F) Sensors
(2 Variants v LI'f B Wamnings) v (F) Temperature Sensor
manipulation.js L1 () Gale/ Strong Wind * max =60
= Readme.txt IR ® Heat @ warn = '43'
WS.ccfm F) Wind Speed Sensor
W5axfm v @@ HTML Weather Station
v 3 WeatherStationHTML
o sredir= "
o dir=""
2 css
Sz out 2 &rvis| T O i images
o, 5 s .
5 . - @ exidoc Weather Station User Manual
Label i Feature Models Family Models & bt index v
abe 2 2
| ¥ (F) German = Properties 7 LIl Bookmarks _r;‘_ Problems| B Conscle) m > =0
v 1 F
5 [P Languages ¥4 £ German
v & (F)Sensors
] 3 (F) Temperature Sensor General Unique ID | ilpiLoRjAhselSCP4 ~
I .
¥ 2 (B)Weather Station Description | Unique Name German
] 3 (F) Wind Speed Sensor =
Rationale Visible Name | German
Class/Type | ps:feature ps:feature
Mandatory Optional Alternative Or
Variation Type

Default Selected Range: | 1

b

12:65 69 (3)

7.3. Editors

pure::variants provides specialized editorsfor each type of model. Each editor can have several pagesrepresenting
different model visualizations (e.g. tree-based or table-based). Selecting the desired page tab within the editor
window changes between these pages.

7.3.1. Common Editor Pages

Since most models are represented as hierarchical tree structures, different model editors share a common set of
pages and dialogs.

Tree Editing Page
The tree-editing page shows the model in a tree-like fashion (like Windows Explorer). This page allows multi-
ple-selection of elements and supports drag and drop . Tree nodes can also be cut, copied, and pasted using the

global keyboard shortcuts (see Section 9.11, “ Keyboard Shortcuts”) or via a context menu.

Selection of a tree node causes other views to be updated, for instance the Properties view. Conversely, some
views also propagate changes in selection back to the editor (e.g. the outline views).

130

Common Editor Pages

A context menu enables the expansion or collapse of al children of anode. The level of details shown in the tree
can be changed in the "Tree Layout" sub-menu of the context menu. If an attribute is selected in the tree and the
context menu is opened, this sub-menu contains the special entry "Hide Attribute: name" is shown. It isused to
hide this attribute in the tree view. Hidden attributes can be made visible again with the sub-menu action Table
Layout->Change . A dialog is opened which presents a list of all visible attributes and all invisible attributes.
This list can be adapted as desired. Additionally the tree layout allows to generally show or hide "Restrictions”,
"Constraints', "Relations’, "Attributes' and "Inherited Attributes". If attributes are set as hidden, the tables men-
tioned above have no effect. In addition the layouts can be given a name to store them permanently in the eclipse
workspace. A named layout can be set as default layout, which can apply for only one tree layout, which then
alwaysis used for any newly opened model (see Section 7.4.2, “ Visualization View ” for moreinformation on it).

Double-clicking on a node opens a property dialog for it.

The labels of the elements shown in the tree can be customized on the Variant Management->Visualization pref-
erence page.

Table Editing Page

The table view is available in many views and editors. This view is a tabular representation of the tree nodes.
The visible columns and al so the position and width of the columns can be customized via a context menu (Table
Layout->Change). A layout can be given a name. Named layouts are shown in, and can be restored from, the
Visualization view (see Section 7.4.2, “ Visualization View ”). Named layouts and layout changes for each table
are stored permanently in the Eclipse workspace. Asfor tree layouts a table layout can be set as default. Clicking
on a column header sortsthat column. The sort direction may be reversed with a second click on the same column
header.

Tip

Double clicking on a column header separator adjusts the column width to match the maximal width
required to completely show all cells of that column.

Most cellsin table views are directly editable. A single-click into a cell selects the row; a second click opens the
cell editor for the selected cell. The context menu for a row permits addition of new elements or deletion of the
row. A double-click on arow starts a property dialog for the element associated with the row.

Constraints Editing Page

The Constraints page is available in the Feature and Family Model Editor and shows all constraintsin the current
model. For pure::variant 5 projects constraint can aso be added to variant models Constraints can be edited or
new created on this page. It aso supports to change the element defining a constraint. The defining element is
not available for variant models.

Figure 7.3, “Constraints view” shows the Constraints page containing two constraints formulated in pvSCL . The
first column in the table of the page contains the name of the constraint. The constraint expression is shown in the
second column. In column three the type of the element defining the constraint is shown. The defining element
itself is shown in the last column.

131

Common Editor Pages

Figure 7.3. Constraints view

“WSxfm 53 ="

Mame | Constraints Defining Element

éIn order to show Warnings any sensor shoul... £ Sensors i (F) Warnings

Sensors

Language: pvscl New Remove Restore Appl

Tree |5 Table |=8 Graph @ Constraints

New constraints can be added by pressing button "New". The hame of aconstraint can be changed by double-click-
ing into the name field of the constraint and entering the new name in the opened cell editor. Double-clicking
into the "Defining Element” column of a constraint opens an element selection dialog allowing the user to change
the defining element.

Clicking on a constraint shows the constraint expression in the editor in the bottom half of the page. The kind of
editor depends on the language in which the constraint isformulated (seethe section called “ Advanced Expression
Editor ” for more information about the editor). The language for the constraint expression can be changed by
choosing a different language from the "Language" list button.

Changes to constraints are applied using the "Apply" button and discarded using the "Restore" button.

Graph Visualization Page
The graph visualization page is primarily intended for the graphical representation and printing of models. Al-

though the usual model editing operationslike copy, cut, and paste and the addition, editing, and deletion of model
elements also are supported.

Note

The graph visualization is only available if the Graphical Editing Framework (GEF) isinstalled in the
Eclipse running pure::variants. More information about GEF are available on the GEF Home Page .

For nearly all actions on a graph that are explained in the next sections keyboard shortcuts are available listed in
Section 9.11, “ Keyboard Shortcuts” .

Graph Elements

Model elements are represented in the graph as boxes containing the name of the element and an associated icon.
Feature model elements are represented as shown in the next figure.

E mandatory festure

? optional feature ||¢Palternative festure || & or testure |

The representation of Family Model elements slightly differs for part and source elements.

|@ root componernt || E} camponent || _J clazs: part || @ type: source |

Parent-child relations are visualized by arrows between the parent and child elements.

[Tt} [T

132

http://www.eclipse.org/gef

Common Editor Pages

Other relations are visualized using colored connection lines between the related elements. The color of the con-
nection line depends on the relation and matches the color that is used for this relation on the tree editing page.

=
Ei

4 Requires: 'F2'

4 Recommends: 'F2'———_]

4@ Conflicts: 'F2' W U Fo

@ Discouranes: F2'——" |

4@ Influences: 'F2' /

& Conditional Reguires: 'F2'
Requests Provider: 'F2* |

If an element has children a triangle is shown in the upper right-hand corner of the element box. Depending on
whether the element is collapsed or expanded ared or white corner is shown.

E cullapsecq E expanded\|

Graph Layout

Thelayout of the graph can be changed in several ways. Graph elements can be moved, expanded, collapsed, hid-
den, and automatically aligned. The graph can be zoomed and the layout of the connections between the elements
of the graph can be changed.

Two automatic graph layouts are supported, i.e. horizontal aligned and vertical aligned. Choosing "Layout Hori-
zontal" from the context menu of the graph visualization page automatically layouts the el ements of the graph from
left to right. The elements are layouted from top to bottom choosing "Layout Vertical" from the context menu.

Depending on the complexity of a graph the default positioning of the connection lines between the elements of
the graph may not be optimal, e.g. the lines overlap or elements are covered by lines. This may be changed by
choosing one of three available docking rules for connection lines from the submenu "Select Node Orientation”
of the context menu.

No Docking Rule The connection lines point to the center of connected elements. Thus con-
nection lines can appear everywhere around an element.

U childs child 3 /

0 "]
| oo
& childs child 2

U child 3 | e \ =l

a

/ I child 1

¥ childs child 4 \‘
U childs child 1

Dock Connectionson Left or Right The connection lines are positioned in the middle of the left or right side
of connected elements. This is especially useful for horizontally layouted

graphs.

133

Common Editor Pages

u:hlld 2
ChlldS child 3
ChlldS child 4
u:hllds child 2 Chlld 1)

Dock Connectionson Top or Bot- The connection lines are positioned in the middle of the top or bottom
tom side of connected elements. Thisis especially useful for vertically layouted
graphs.

|:| u u
T chids child 4

/

I chids chid 3 T chid 1)

/T,

U chilcks child 1 U childs child 2

Thegraph can be zoomed using the"Zoom In" and " Zoom Out" items of the context menu of thegraph visualization
page.

Several elements can be selected by holding down the SHIFT or STRG key while selecting further elements, or
by clicking somewhere in the empty space of the graph visualization page and dragging the mouse over elements.
A dashed line appears and all elementsthat are partially or wholly enclosed in it will be selected.

If an element has children the element can be expanded or collapsed by clicking on the triangle in the upper right-
hand corner of the element's box. Another way isto use the " Collapse Element", "Expand Element", and "Expand
Subtree" context menu items. In contrast to the "Expand Element" action, "Expand Subtree" expands the whole
subtree of an element, not only the direct children.

To hide an element in the graph this element has to be selected and "Hide Element" has to be chosen from the
context menu. Attributes, relations, and the connection lines between related elements (relations arrows) also can
be hidden by choosing one of the itemsin the "Show In Graph" submenu of the context menu.

Elements can be moved by clicking on an element and move the mouse while keeping the mouse button pressed.
Thisonly works if the element selection tool in the tool bar is selected.

Figure 7.4. Selected Element Selection Tool

[:3 Select
@» Feature

134

Common Editor Pages

Graph Editing

Basic editing operations are available for the graph. The elements shown in the graph can be edited by choosing
"Properties’ from the context menu of an element. Elements can be copied, cut, pasted, and deleted using the
corresponding context menu items.

New elements can be created either by choosing one of the items below the "New" context menu entry or by using
the element creation tool provided in the tool bar of the graph visualization page.

Figure7.5. Feature/Family Model Element Creation Tools
[% Select ‘ [% Select ‘

| _‘j Element |@ Feature

Graph Printing
Printing of agraph is performed by choosing the File->Print menu item. The graph is printed in the current layout.
Note
Printing is only available on Windows operating systems.
Element Properties Dialog
The properties dialog for an element contains a General, Relations, Attributes, Restrictions, and Constraints page.
General Page

This page configuresthe general propertiesof amodel element. According to the model type the available element
properties differ (see Figure 7.6, “Family Model Element Properties’).

135

Common Editor Pages

Figure 7.6. Family Model Element Properties

r'il Edit Component

Edit "WeatherStationHTML'
Edit general properties..,

Relations Attributes Restrictions Constraints

Unique ID | iptC2Mg3tkteakar

Unigque Name | Water

Visible Mame | Water

Class/Type | psicomponent | liguid

(::If\u'1ar1c|at0rj,/r @Optional () Alternative

Vanation Type
yp [+] Default Selected Range: | [0,n]

or

Description

Ii?:l E -

The following list describes the properties that are aways available.

Unique ID

Unique Name

Visible Name

Class/Type

Variation Type

The unique identifier for the model element. This identifier is generated
automatically and cannot be changed. Every Feature Model element hasto
have a unique identifier.

The unique name for the model element. The name must not begin with
a numeric character and must not contain spaces. The uniqueness of the
name is automatically checked against other elements of the same model.
The unique name can be used to identify elements instead of their unique
identifier. Unique names are required for each feature, but not for other
model elements. The Unique name is displayed by default (in brackets if
the visible name is also displayed).

The informal name for the model element. Thisnameisdisplayed in views
by default. This name can be composed of any characters and doesn't have
to be unique.

The class and type of the model element. In feature models el ements can
only have class ps:feature . Thus the element class for features cannot be
changed. Elements in Family Models can have one the following classes:
ps:component , ps:part , or ps:source . The root element of afamily mod-
el always has the class ps:family . The type of a model element is freely
selectable.

The Variation type of amodel element. The variation type specifies, which
selection group applies to the element. One of "mandatory” , "optional” ,
"alternative” or "or" can be selected.

136

Common Editor Pages

Range

Default Selected

Description

Relations Page

For variation type Or it is possible to specify the number of features/ fam-
ily elements that have to be selected in a valid configuration in terms of
a range expression. These range expressions can either be a number, e.g.
2, or an inclusive number range given in sguare brackets, e.g. [1,3], or a
set of number ranges delimited by commas, e.g. [1,3], [5, 8]. The asterisk
character * or the letter n may be used to indicate that the upper bound is
equal to the number of elementsin the Or group.

This property definesthe default sel ection state of amodel element. Default
selected elements are sel ected automatically if the parent element is select-
ed. To deselect this element either the parent has to be deselected or the
element itself hasto be excluded by the user or the auto resolver. Note, that
by default the default selection stateis disabled for features and enabled for
family elements.

The description of the model element. For formatted text editing see Sec-
tion 7.5.1,“ Common PropertiesPage” . Thedescription field isalso avail-
able on the other pages.

This page alows definition of additional relations between an element and other elements, such as features or
components (see Figure 7.7, “Element Relations Page”). Typical relations between features, such as requires or
conflicts, can be expressed using a number of built-in relationship types. The user may aso extend the available
relationship types. For defining a new custom relation type the name of the new type can be entered into the text
filed into the Type column instead of selection on predefined relation from the dropdown list.

More information on element relations can be found in Section 5.2.3, “ Element Relations

)

Edit "WeatherStationHTML'

Figure7.7. Element Relations Page

Edit Relations...

General

Relaticns

B

Attnbutes Restricions Constraints

b

Type
psirequires

Targets
"HTML Weather Station”

Add
v

psinfluences
ps:provides

ps:requiresAll
ps:sharedProvi
pmsupports

ps:discouragesfny
ps:exclusiveProvider
psiexpansicnProvider

psirecommendedFor
psirecommendedForAll
psirecommends
psirecommendsAll
psirequestsProvider

= psrequiredFor

gs:reguireanrAll

= Remave

der

I:?:I m -

Cancel

137

Common Editor Pages

Attributes Page
Every element may have an unlimited number of associated attributes (name-value pairs).

The attributes page uses atable of treesto visualize the attribute declaration (root row) and optional attribute value
definitions (child rows).

Each attribute has an associated Type and may have any number of Value definitions associated withit. The values
must be of the specified Type. The number of attribute value definitionsis shown in the # column. In the example
in Figure 7.8, “ Sample attribute definitions for afeature” , the attribute DemoAttribute has two value definitions
(1and 0).

Figure 7.8. Sample attribute definitionsfor a feature

I?J

Edit 'WeatherStationHTML"
Edit Attributes...

General Relations Attributes Restrictions Constraints

-]
Attribute | # | F | ts | v | Type Value Add
= Demohttribute 2 v pstinteger @ 100

1. | Rermove

2 * 0 Add value
Rernove value
Move up

Maove down

Range:

Description

@a-

Each attribute of type ps:integer or ps.float may define arange which the attribute values have tofit in. Thisrange
can be defined in the "Attribute page" of an element while creating the attribute or the Section 7.4.6, “ Properties
View " after selecting the corresponding attribute. The syntax of the rangesisdescribed in Section 5.2.4, “ Element
Attributes”

Attributes can be inherited from parent elements. Checking the inheritable cell (column icon t) in the parent
elements Attribute page does this. An inherited attribute may be overridden in a child element by defining a new
attribute with the same name asthe inherited attribute. The new attribute may or may not beinheritable asrequired.

Attributes can be fixed by checking thecell inthe F column. Fixed attributes are calcul ated from value definitions
in the model in which they are declared, in contrast to non-fixed attributes for which the value is specified in
a VDM. Default values can be (optionally) defined here for non-fixed attributes. These are used if no value is
specified in the VDM.

An attribute may have arestricted availability. Thisisindicated by a check mark in the ** column. Clicking on a
cell in this column activates the Restrictions editor. To restrict the complete attribute definition use the restriction
cell in the attribute declaration (root) row. To restrict an attribute value, expand the attribute tree and click into
the restriction cell of the value. In the appearing dialog restrictions can either be entered directly into acell or by
using the Restrictions editor. Clicking on the button marked ... which appears in the cell when it is being edited
opens this editor. See the section called “ Restrictions Page” for detailed information.

During model evaluation, attribute valuesare calculated in thelisted order. The M ove Up and M ove Down buttons
on the right side of the page can be used to change this order. The first definition with avalid restriction (if any)
and a constant, or avalid calculation result, defines the resulting attribute value.

138

Common Editor Pages

Values can be entered directly into a cell, or by choosing a value from a list (combo box) of predefined values,
or by using the Vaue editor. Clicking on the button marked ..., which appearsin the cell when it is being edited,
opensthiseditor. The editor also allows the value definition type to be switched between constant and cal culation.
The calculation type can use the pvSCL language to provide more complex value definitions. More information
on calculating attribute valuesis given in the section called “ Attribute Vaue Calculations with pvSCL " .

The name of an attribute can be inserted directly or chosen from alist of attributes defined for the corresponding
element type in the pure::variants type model. When choosing an attribute from the list, the attribute type and the
fixed state of the attribute are set automatically.

It isalso possibleto provide attributes which have a configurabl e collection of values as datatype. Each contained
valueisavailablein avariant if the corresponding restriction holds true. To use this feature, square brackets ("[]")
for list valuesor curly brackets ("{}") for set values have to be appended to the data type of the attribute in column
Type, eg. ps.string{} , ps:boolean[] , or ps:integer{} .

The use of attributes is covered further in Section 5.2.4, “ Element Attributes” .
Restrictions Page

The Restrictions page defines element restrictions. Any element that can have restrictions can have any number
of them. A new restriction can be created using the Add button. An existing restriction can be removed using
Remove . Restrictions are OR combined and evaluated in the given order. The order of the restrictions may be
changed using the M ove Up and M ove Down buttons on the right side of the page.

Figure 7.9. Restrictions page of element propertiesdialog

[2) Edit Feature || T2 Edit Feature x
Edit "Warnings' Edit "arnings'
e O b 3y
Edit Restrictions... Edit Restrictions...
General Relations Attributes Restrictions Constraints General Relations Attributes Restrictions Constraints
Mame Restriction Add # MName Restriction Add
1. "Wind Speed Sensor” L: [WindSpeed| =
2. "Air Pressure Sensor” Eemove 2, "Air Pressure Sensor” Eemoye
3. “Ternperature Sensor” Move up 3. "Ternperature Sensor” Move up
Maove down Maove down
Description Description
Venue should be open air Venue should be open air
a Y
@a- Cancel @a- Cancel

For each restriction a descriptive name can be specified. It has no further meaning other than a short description
of what the restriction checks. A restriction can be edited in place using the cell editor (shown in the right side of
figure Figure 7.9, “ Restrictions page of element propertiesdialog”). Notethe differencein restriction #1 in the left
and right sides of the figure. Unlessthey are being edited, the element identifiersin restrictions are shown astheir
respective Visible names (e.g. 'Wind Speed Sensor) when available. When the editor is opened the unique name
is shown (e.g. 'WindSpeed'), and no element identifier substitution takes place. The ... button opens an advanced
editor that is more suitable for complex restrictions. This editor is described more detailed in the section called
“ Advanced Expression Editor ” .

Constraints Page

The Constraints page defines model constraints. Any element that can have constraints can have any number of
them. A new constraint can be created using the Add button. An existing constraint can be removed using Remove

139

Common Editor Pages

. The order of constraints may be changed using the M ove Up and M ove Down buttons on the right side of the
page. This has no effect on whether a constraint is evaluated or not; constraints are always eval uated.

Figure 7.10. Constraints page of element propertiesdialog

I—n‘:I r"j Edit Feature «
Edit "Warnings' Edit "Warnings'
. T o g
Edit Constraints... Edit Constraints...
General Relations Attributes Restrictions Censtraints General ~ Relations Attributes Restrictions ~ Constraints
Mame Constraints Add # MName Constraints Add
1. Sensors are required SELF REQUIRES Sensors 1. Sensors are required SELF REQUIRES SE”IW"S
Remove Remove
Move up Move up
Move down Move down
< > < >
Description Description
Ensures that to display a warning, any sensor must be present. Ensures that to display 2 waming, any sensor must be present.
@ @@- Cencel
\2) m T Cancel £ ancel

For each constraint a descriptive name can be specified. It has no further meaning other than a short description
of what the constraint checks. A constraint can be edited in place using the cell editor (shown in the right side
of figure Figure 7.10, “Constraints page of element properties dialog”). The ... button opens an advanced editor
diaog that is more suitable for complex constraints. This editor is described more detailed in the section called
“ Advanced Expression Editor ” .

Advanced Expression Editor

The advanced expression editor is used everywhere in pure::variants where more complex expressions may be
inserted. Thisisfor instance when writing more complex restrictions, constraints, or calculations.

Currently it supports the pvSCL language. A specia editor is available for the pySCL language. Figure 7.11,
“Advanced pvSCL expression editor” shows the pvSCL editor editing a constraint.

140

Common Editor Pages

Figure 7.11. Advanced pvSCL expression editor

15| Edit Constraint >

Edit the constraint l—\
O
Select language of the constraint. \—I
Edit pvSCL language conferm expression. Use CTRL+5pace to activate auto

Constraint Return type:

SELF REQUIRES Sen

F! Sensors - Sensors

Open Element Selection Dialeg ...

This dialog supports syntax highlighting for pySCL keywords and auto completion for identifiers. There are two
forms of completion. Pressing CTRL +SPACE while typing in an identifier opens a list with matching model
elementsand pvSCL keywords asshowninthefigure. If the user enters”"<ModelName>." or " @<Model Id>/" alist
with the elements of the model is opened automatically. When pressing CTRL +SPACE the opened list contains
all kind of proposals: models, elements and operations, if there is no context information available. Therefore
an typing of ™' opens the list with only elements contained. When then one of the elements is selected, the full
qualified name of the element is inserted into the code, i.e. "<ModelName>.<ElementName>". There is aways
a specia entry at the end of such alist, "Open Element Selection Dialog...", which opens the Element Selection
dialog supporting better element selection. This dialog is described more detailed in the section called “ Element
Selection Dialog ” .

Element Selection Dialog

The element selection dialog (figure Figure 7.12, “Element selection dialog”) is used in most caseswhen asingle
element or a set of elements has to be selected, e.g. for choosing the relation target elements when inserting a new
relation. The left pane lists the potentially available elements, the right pane lists the selected elements. To select
additional elements, select them in the left pane and press the button ==> . Multiple selection is also supported.
To remove elements from the selection, select them in the right pane and use the button <==.

141

Feature Model Editor

Figure 7.12. Element selection dialog

rﬂ‘:l Select Element X

Select Eo_\l

Select and/or deselect element(s)

Label Model 2 Label Model
F! Languages WeatherStationFeature F) Wind Speed Sensor WeatherStationFeatures
F! Sensors WeatherStationFeature
Fi Color WeatherStationFeature ===
F Air Pressure Sensor WeatherStationFeature
F) Heat WeatherStationFeature ::
F! Temperature Sensor WeatherStationFeature
F! English WeatherStationFeature ,
£ >

Filter (on visible colurmns, Label, Unique Name and Visible Mame; * = any string, 7 = any character) or press Define for additional Filter

| | [Case sensitive Define Clear
Mame Info
WeatherStationFeatures
Scope
(®) Current Project (O Referenced Projects
(O Workspace
P

The model selection and filter fields in the lower part of the dialog control the elements that are shown in the | eft
Label field. By default, all elementsfor all models within the current project are shown. If afilter is selected, then
only those elements matching the filter are shown. If one or more models are selected, then only elements of the
selected models arevisible. If the scopeis set to Workspace then all models from the current workspace are listed.
The model selection is stored, so for subsequent element selections the previous configuration is used.

Tip

The element information shown in the left and right Label fields is configurable. Use Table Lay-
out->Change... from the context menu to select and arrange the visible columns. See the section called
“ Table Editing Page” for additional information on table views.

7.3.2. Feature Model Editor

Every open Feature Model is shown in a separate Feature Model editor tab in Eclipse. This editor is used to add
new features, to change features, or to remove features. Variant configuration is not possible using this editor.
Instead, thisis done in avariant description model editor (see Section 7.3.4, “ Variant Description Model Editor
" and Section 4.4, “Using Configuration Spaces’ for more information).

The default page of a Feature Model Editor is the tree-editing page. The root feature is shown as the root of the
tree and child nodes in the tree denote sub-features. The icon associated with a feature shows the relation of that
feature to its parent feature (see Table 9.4, “Element variation types and itsicons’).

142

Feature Model Editor

Figure 7.13. Feature Model Editor with outline and property view

& Variant Management - Weather Station Example/W5xfm - Eclipse SDK - O X
File Edit Mavigate Search Project Prolog Run S0L Window Help
01~ G ® & % v & - E%l| |_§J e b (=104 i @‘ b 4 | b= .’zﬁs [5] Variant Mana..
gz out i 6 vis | = O|[[E Wsafm i3 =B
= =
2, 7 w 1 [F) Weather Station |
=+
?ﬂ- Label ~ 1 F) Sensors
abel =
~w ¥ (F) Temperature Sensor =
F)#& Wind Speed Sensor v o max='60'
F E Weather Station = B0
Ft/? Warnings v @ warn = '43'
P Temperature Sensor * 45
£ 1 Sensors ? (F) Color
) Languages ¥ (F) Wind Speed Sensor
FI3& Heat # (F) Air Pressure Sensor
Fi4% German ~ U iF Languages
F)3#& Gale/ Strong Wind & (F) English
P4 English # (E) German
£% Color ? IRy Warnings
)R Air Pressure Sensor Tree| [Table| =3 Graph| 4 Constraints
= Properties &2 [l Bookmarks [:._ Problems) m -7 =0
F) Sensors
General Unique ID | i302R54Fg7d7nMIj ~
Description | Unique Name| Sensors |
Visible Name| Sensors |
Class/Type | ps:feature |ps:feature v|
@Mandatnr_\,f OOptinnaI () Alternative Oor
Variation Type .
< N Default Selected Range: | n ©
o~ 12 1

Some keyboard shortcuts are supported in addition to mouse gestures (see Section 9.11, “ Keyboard Shortcuts”).

Creating and Changing Features

Whenever anew Feature Model is created, aroot feature of the same name is automatically created and associated
with the model.

Additional sub-features may be added to an existing feature using the New context menu item. This opens the
New Feature wizard (see Figure 7.14, “New Feature wizard”) where the user must enter a unique name for the
feature and may enter other information such as a visible name or some feature relations. All feature properties
can be changed later using the Property dialog (context menu entry Properties, see the section called “ Changing
feature properties’).

A feature may be deleted from the model using the context menu entry Delete. Thisalso deletesall of the feature's
child features.

Cut, copy and paste commands are supported to manipulate sub-trees of the model. These commands are avail-
able on the Edit menu, the context menu of an element and as keyboard shortcuts (see Section 9.11, “ Keyboard
Shortcuts”).

143

Feature Model Editor

Figure7.14. New Feature wizard

[6] New Feature O >

General

Edit general properties...

Unigue ID | io-V3L40wVOrmaAbl

Unigue Name| Car_ABC |

Visible Name | ABC |

Class/Type | ps:feature |p5:feature v|

() Mandatory :
[Default Selected Range: [0,n]

() Alternative o
Variation Type

Description

Changing feature properties

Feature properties, other than a feature's Unique I dentifier , may be changed using the Property dialog. This
diaog is opened by double-clicking the feature or by using the context menu item Properties (see Figure 7.15,
“Feature Model Element Properties’).

144

Family Model Editor

Figure 7.15. Feature M odel Element Properties

[2] Edit Feature *

Edit 'Sensors’

Edit general properties... IE:_\I

General Relations Attributes Restrictions Constraints

Unique ID | i302R54Fg7d7nMIj

Unique Name| Size |

Visible Name| Burger Size |

Class/Type | ps:feature | ps:feature v|

OMandatory OOptionaI () Alternative ® Or
[] Default Selected Range: | [1,n] |

Vanation Type

The size of the burger|

Description

See the section called “ Element Properties Dialog ” for more information about the dialog.

7.3.3. Family Model Editor

The Family Model Editor shows a tree view of the components, parts, and source elements of a solution space.
Each element in the tree is shown with an icon representing the type of the element (see Table 9.8, “Predefined

part types’). The element may additionally be decorated with the restriction sign ¥ if it has associated restriction
rules. For more information on Family Model concepts see Section 5.4, “ Family Models” .

145

Variant Description Model Editor

Figure 7.16. Open Family M odel Editor with outline and property view

& Variant Management - Weather Station Example/WS.ccfm - Eclipse 5DK - O x
File Edit Mavigate Search Project Proleg FRun 50L Window Help

o - C KK : Q- ¥ v §E§|| B - - (=1 g v X | | [5] Variant Mana...
GF Outline ¥ 6" Visualization =0 WS.ccfm 52 =5

=
A2 Y v 1 @ HTML Weather Station -~

v @ HTML Weather Station ~ v 7 H3 WeatherStationHTML -

v @ css v oF sredir= ") i

w

v df excssiimports .
~ @ dir="'

ps:file: imports.css

v f eccss main R .
. . . ~
ps:file: main.css ? C5F5
v @ crcdir = 'ess'
v o excss: pressure /
® ' fess!

psfile: pressure.css

oy o
W 4 =",
v @ excss: tacho dir = ".fcss

psfile: tacho.css 2 = I';C.SSI

v o eccss thermometer v é'; SRS |Imp.0rts
psifile: thermometer.css v pSF:fI|lE:ImFlDI"tS.CSS

v @ eccss thermometer_blue v f||e:. imports.css v
psifile: thermometer_blue.css Tree| (5 Table| 22 Graph Xz. &M"’r‘. 't“

- é exces: wind B ree able rap onstraints

s:file: wind.css = Properties ookmarks | . Problems [7=
E] psfile: wind = Prop 57 Ll Bookmarks| 7. Probl & ¥ =0
~ @ images) o
v & eximg: n_0 ps:file: imports.css
" _ps’ﬁ'e’:—n'p”g General Unique ID | iUBw33yLlkakiy Y

v eximg: n_
ps:file: n_1.png Description | Unique Name| |

v & eximg:n_10 Visible Name| imports.css |
ps:file: n_10.png -

v & ecimg: n_11 Class(Type | psisource | psfile v|
-ps:ﬁle: n_11.png o (O Mandatory (@ Optional (O Alternative Cor

v é Seimg: n12 Variation Type] Default Selected R 2 | [0
psfile: n_12.png v ange: | [On]

o* 65 1

7.3.4. Variant Description Model Editor

The VDM Editor is used to specify the configuration of anindividual product variant. Thiseditor allowsthe user to
make and validate el ement selections, to set attribute val ues, and to exclude model e ementsfrom the configuration.

In this editor there are two tree views, one showing all feature models in the Configuration Space and another
showing all family models in the Configuration Space.

Element Selection

A specific model element can be explicitly included in the configuration by marking the check box next to the
element. Additional editing options are available in the context menu. For instance, there are menu entries for
desel ecting or excluding one or whol e sub-trees of elements. It isnot supported to make asel ection for two elements
with the same unique name of models with the same name.

Elements may also be selected automatically, e.g. by the Auto Resolver enabled by pressing button &8 . However,
the context menu allows the exclusion of an element; this prevents the Auto Resolver from selecting the element.

Each selected element is shown with an icon indicating how the selection was made. The different types of icons
are documented in Table 9.5, “Types of element selections” . If the user selects an element that has already been
selected automatically its selection type becomes user selected and only the user can change the selection.

When the £ jcon is shown instead of the selection icon, the selection of the element is inadvisable since it will
probably cause a conflict.

Since automatically calculated selections may be changed during evaluation by the auto resolver to make the
selectgions valid the Variant Description Model editor provides an action to make the current selection explicit.

146

Variant Description Model Editor

Meaning the current automatic calculated selection can be changed to explicit user selections to prevent the auto
resolver from changing them. Thisis done with the Finalize Configuration from the editors context menu. This
action opens anew dialog whioch allows the user to select which selectionswill be changed to explicit selections.

Figure 7.17. Finalize Configuration Dialog

2l x

Finalize Configuration dialog I—\
O
Please select action(s), then press OK. \—I
Scope
Feature and Family Models ~
All elements and their attributes of all feature and all family models will

be processed according to the selected modes,

Modes

[Auto -> User

[Unselected -> Excluded
[JUnlocked -> Locked

OK Cancel

First the scope allows the user to selected wether the feature or family models or both shall be considered. The
modes alow the user to select wether auto selections shall be converted into user selection and if unselected
elements shall be excluded. Additionally the converted selections can be locked, so the user can not change them
by accident.

The Reopen Configuration action reverts the finalization.

Guided Variant Configuration

In addition to configuring variantsin the Variant Description ModelEditor , pure::variants offers the possibility
to create Variant Configuration Wizards that guide the user through the configuration process. The Variant Con-
figuration Wizard is available in the Variant Description Model Editor and as part of the M odel Viewer inthe
pure::variants Web Components.

If a configuration space is configured to use a Variant Configuration Wizard M odel the Variant Description
Model editor shows an additonal editor viewer named Wizard . See Section 6.19, “Customizing the Variant
Configuration Process” for detailed information on how to configure the Variant Configuration Wizard.

The wizard is divided into two areas. The left area lists the configurations steps that the wizard provides. The
bigger area on the right is the configuration area. It allows the user to make selections and also displays the start
and finish page of the wizard.

When the configuration wizard islaunched, the start page of the wizard displays startup options. (See Figure 7.18,
“Variant Configuration Wizard Start Page”) Depending on the configuration of the Variant Configuration Wiz-
ard the start page lists the following startup options. Start configuration from scratch discards all previous se-
lections and resets the variant model to itsinitial, unconfigured state. Resume configur ation resumes the config-
uration at the point where the user left the configuration the last time. Review configuration allows the user to
view the configuration without being able to change any selection. This is the only mode which allows the user
to navigate through the pages without changing selections.

147

Variant Description Model Editor

Figure7.18. Variant Configuration Wizard Start Page

Rom.vdm 53 = 0

Sensors Start Page
Color

Languages

Warnings Use this wizard to configure our famouse weather station.

Start configuration from scratch: (O}
Resume configuration:
Review configuration:

Start

i Wizard| i Feature Models Family Models

After clicking the Start button, the user is guided through the configuration process step by step. Each configura-
tion step isdisplayed on asingle pagein thewizard, and this pagelistsall the configuration itemsthat are necessary
to complete the corresponding configuration step. (See Figure 7.19, “Variant Configuration Wizard Step Page”
) If a configuration item has an associated description, this description is shown below the item. In addition to
individual configuration items, a configuration step itself can also have a description. This description is shown
at the top of the page.

In this example, shown in Figure 7.19, “Variant Configuration Wizard Step Page” an or group is shown, which
meansthat at | east one element hasto be sel ected. Sel ecting elements may changethe content of the step page. Since
selecting Temper atur e requires configuring the values of the attribute Maximum Temperature and Warning
Temper atur e those two attributes automatically become visible on the page.

The buttons Prev and Next allow page navigation. Next isavilable only after al itemsin the current configuration
step have been configured. Using the Prev button resets all configuration decisions that have been made on the
current page and navigates back to the previous page.

148

Variant Description Model Editor

Figure7.19. Variant Configuration Wizard Step Page

*Rom.vdm 3 = O
P Sensors
Calor
Languages
Warnings This feature provides basic functionality for connecting sensors to the weather station.

Three different types of sensors can be connected to the weather station.

V] & Temperature -

This feature enables you to connect temperature sensors to your weather
station, The weather station can properly manage to capture temperatures
between -40°C and +100°C. Any digital temperature sensor can be used.

Measuring interval can be chogosen between 1 second and once a week

Maximum Temperature
Warning Temperature

[3 Wind Speed -
[] % Air Pressure +

Prev Next

3 Wizard | €3 Feature Models Family Models

After all configuration steps are done, the finish Page is shown (See Figure 7.20, “Variant Configuration Wizard
Finish Page”). Thefinish page liststhe following options: Finalize configur ation automatically converts derived
selections and values into user selections and values. The effect of this conversion is that all configuration deci-
sions made in the wizard, even those that were computed by the auto resolver, are treated as if they were made
manually by the user. As such, the auto resolver will not change these decisions accidentally if the variant model is
reopended later on. The only possibility to revise these configuration choices is through explicit user interaction.
Lock configuration locks al user selections so they can not be changed later. Disable wizard disables the wiz-
ard for the currently configured Variant Description Model. This means the wizard is not shown, if the Variant
Description Model is opened again.

Pressing the Finish button performs the selected actions and saves the Variant Description Model.

Figure 7.20. Variant Configuration Wizard Finish Page

*Rom.vdm 53 = 0O

Sensors Finish Page
Color
Languages
Warnings You are finished now. Start with production of the weather station.

Finalize configuration: |

Lock configuration:]

Dizable wizard: ™

Prev Finish

i Wizard| i1 Feature Models Family Models

149

Variant Description Model Editor

Attribute Overriding

The value of non-fixed attributesis specified inthe VDM. Therefore, the Variant Description Model Editor allows
to change non-fixed attributes. There are three possibilities:

 with the Properties view (see Section 7.4.6, “ Properties View ”)

 with the Attributes view (see Section 7.4.1, “ Attributes View ")

 with the cell editors of the Variant Description Model Editor itself

Only the first possibility will be explained in detail. The other two possibilities are similar to the first.

First make sure the VDM editor displays attributes (use context menu Table Layout -> Attributes). Next,
double-click on the attribute you would like to specify avalue for. A cell editor opens and a text can be entered
for the attribute or pressing the ... button opens the Value editor dialog. The given value will be applied with a
click somewhere elsein the tree.

Alternatively, values can be added to a non-fixed/editable attribute of a VDM or other models by right-click on it
and navigating to New -> Attribute value. This action will provide relevant dialogs to input values. By pressing
OK in the dialogs, the value can be stored in the attribute.

Figure 7.21. Specifying an attribute value in VDM with cell editor

v ¥ IE/ densors
IF) Temperature Sensor
3 (F) Wind Speed Sensor
~ 3& (F) Air Pressure Sensor
Count="'3%
i

¢ (F) Languages
- I Y S .

W I F) sensors

& (F) Temperature Sensor

3 (F) Wind Speed Sensor

~w # (F: Air Pressure Sensor
5

U P Languages
@ B Wiarminae

For list and set attributes a special dialog appears when editing attribute valuesin VDMs. The table represents the
values and provides possibility to add (using Add value button), edit (by double clicking the table cells), remove
(one or multi select) or re-arrange values.

Attributes of grey color mean that thereis currently no value set for the attribute and that the default value of the
attribute is taken from the associated Feature or Family Model. If no value is specified in VDM for an attribute
with default value then awarning will be shown, calling attention to that issue. Attributes with no valuein VDM
and no default value will produce an error during evaluation.

Element Selection Outline View

The outline view of the VDM shows the selected elements with their selection state. Y ou can click on an element
to navigate to it in the VDM. This view may be filtered from the views filter icon or context menu.

150

Variant Result Model Editor

Figure 7.22. Outline view showing thelist of available elementsin a VDM

% Variant Management - Weather Station Example/WS.adf
Eile Edit Mavigate 5Search Project Proleg Run

il C ®® @- 4

o= Outline i1 . & Visualization | 2 ~ = O

=

!

Label
Languages
Sensors
Weather Station
English

German

WL I I Iy I |
x onfl =l $ $ D=0 DeD O=D

Color

ol
=

Warnings

N

Air Pressure Sensor

FI3& Gale/ Strong Wind

FI3& Heat

F/#& Temperature Sensor
F/#& Wind Speed Sensor

7.3.5. Variant Result Model Editor

The Variant Result Model Editor (VRM Editor) isused to view a saved Variant Result Model. To open aVariant
Result Model, double-click on the corresponding file (suffix . vr m) in the Variant Projects View. This opens the
editor in the style of the VDM Editor.

A Variant Result Model can not be changed because it already represents a concrete variant. Thus the shown
element selection is read-only.

If a Variant Result Model is located below a Configuration Space folder, transformation of the Variant Result
Model is possible. The required information for the transformation is taken from the Configuration Space. If no
valid transformation configuration is found, the transformation will be rejected. A warning is shown if the models
of the Configuration Space do not conform to the models in the Variant Result Model.

Figure 7.23, “VRM Editor with outline and properties view” shows a sample variant result mode.

151

Model Compare Editor

Figure 7.23. VRM Editor with outline and properties view

& Variant Management - Weather Station Example/Variants/BerlinResults.vrm - Eclipse SDK - O it
File Edit Mavigate Search Project Proleg Run S0L Window Help

] 52 C BK Q- &~ E'| B < < i (=g 4 5] Variant Mana..
‘2, Variant Projects 2 =0 BerlinResultsvrm i =8
e 7 v + 1 (F) Weather Station] g
EﬁHierarchicalVariantExampIe - v v 1B Sensors .
~ =2 Weather Station Example v AR (E) Temperature Sensor =
= input v *
= reports =
= script A g
w (2% Variants *
Ankarasedm | # F) Wind Speed Sensor
@ Athenvdm ~ v 1 (F) Languages
[#] Berlin.vdm | & (F) German
ﬁ Bern.wvdm
Dubaivdm
¥ Hamburg.vdm
¥ Londonwvdm Feature Models Family Models
A Madrid vdm v

= Properties 52 L]l Bookmarks | = Problems =& == =0
5= Qutline 52 & Visualizati| — O i = m

=,| = || (X £ Wind Speed Sensor

Label General Unique ID | iiB3wk-h-iipDy4tU
v & (F) German Description | Unique Name WindSpeed
v 1iF Languages Rational - o
o ationale Visible Name | Wind Speed Sensor
v & FlSensors
] & (F) Temperature Sensor Class/Type | ps:feature ps:feature
v 2 F. \Weather Station - . . -
. Mandatory Opticnal Alternative Or
] & (F) Wind Speed Sensor

Variation Type
Default Selected Range: | [1,n]

6:63 69 (3)

See Section 5.9.2, “ Variant Result Models” for more information about Variant Result Models.
7.3.6. Model Compare Editor

The Model Compare Editor is a special editor provided by pure::variants to view and treat differences between
pure::variants models. The behaviour of this editor is very similar to that of the Eclipse text compare editor. For
genera information about the Eclipse compare capabilities please refer to the Eclipse Workbench User Guide .
The Task section contains a subsection Comparing resources which explains the compare action in detail. For
more information on the use of the pure::variants Model Compare Editor see Section 6.6, “ Comparing Models” .

7.3.7. Matrix Editor

The matrix editor gives an overview of feature selections and attribute values across the variantsin aconfiguration

space. The editor is opened by double-clicking on the configuration space icon & in the Variant Projects view
(see Figure 7.24, “Matrix Editor of a Configuration Space”). The editor may be filtered based on the selection
states of features in the individual Variant Description models: one filter shows the features that have not been
selected in any model, one filter shows the features that have been selected in all models, and one filter shows
the features that have been selected in at least one model. The filters are accessed via the context menu for the

editor (Show elements). The general filtering mechanism can also be used to further specify which features are
visible (also accessible from the context menu).

152

/help/topic/org.eclipse.platform.doc.user/gettingStarted/qs-01.htm

Matrix Editor

Figure 7.24. Matrix Editor of a Configuration Space

£ Variant Management - Weather Station Exsmple/Variants/configspace.xml - Eclipse SOK — a ke
File Edit Mavigate Search Project Prolog Varint Run SOL Window Help
-EB € mR - +-lcee@) R R R A) w5 [Elanant manan] i >
', Variant Projects 52 = B |((2 ~Variants &3 =a
o &~ R SN T . "
;'; & Hierarchicsl Variant Example E|E|s|c|B|E| 28|85 |elelgle £s o
~ 2 Weather Station Example Model Elements Level I | % |&|a|a|2 |8 | |=|2z|8|& | &|& &|%= =
(= input = [E] WeatherStationFeatures
=4 rep.orts | & U (F) Weather Station v N] v v v
mpt [= I (F) Sensors 1 v v 4 v v v v v v v v v v v
::(::Iatlun.]s . : = ¥ (F) Temperature Sensor 1.1 L I O O O B B v N NN N1 IO v I
[Readme.ct o @ max
WS.ccfm i @ warn
WSadm] 7 (® Coler 111 W O 0O 0O & 0000000302000
[%) Wind Speed Sensor 1.2 0O ¥ ¥ ¥ M &b 0 0 &8 & & 08 0 &8 O
B 9 (F) Air Pressure Sensor 1.3 O 00O 0O00«@W K 0000 &
|| = I (F)Languages 2 v v v v v v v v v v v v v v v v
] (F) English 21 M M EH B M B M M H 4 M M M M EH B
|| b (F) German 22 HE B M 4 B M B B M B B B B B M M
] = 7 [Warnings El v v O O « v v O v O O v O v
B 3 (F) Gale / Strong Wind 3.1 0O & O 0O &« &« O 0O &M &M O O &M O &M O
] ¥ (E) Heat 3.2 M M O 0O M O M O M &8 OO0 d O 8 &4
WE WeatherStationHTMLSources
] = U i HTML Weather Station v v v v v v v v v v v v v v v v
Il o config 'C0u 'COu 'COu 'COm '€Ou 'COu 'COm 'COm 'COm 'COw 0w 0w 'COw 'O 'COw 'CO v
] Matrix
[s B U] &

The Matrix Editor allows to change selections and attribute values per VDM. Asfor the table, the columns of the
Matrix Editor can be changed via the same context menu (Table Layout->Change...) . The first column, which
shows the Configuration Space relevant Input Models in the order as they would appear for the VDM Editor, can
not be (re)ymoved. The Input Model Values column, which is visible by default, can be shown but not moved,
since its supposed to show the values of attributes as they are defined in the input model and needs those next to
it. Additionally the table layout allows the user to define the VDMs visible in the matrix. This selection can be
stored in a Matrix Variant Filter . Those filters can be used to open the matrix on the VDMs only matching the
filter aswell as starting transformation and evaluation on the same filter matching VDMs.

To storethe currently opened VDMsin afilter usethe Create Matrix Variant Filter action from the context mennu
of the Matrix Editor. The second possibility to create such afilter isto select a number of VDMs in the projects
view and use the Create Matrix Variant Filter action from the context menu of the project view. A dialog comes
up to define a name for the new filter.

In addition the Matrix Editor allows to evaluate the VDMSs. This is done with the Evaluate Models button in the
editors toolbar, identical to the VDM Editor. Evaluation capability of the Matrix Editor also includes the buttons
in the toolbar Enable automatic checking... and Enable auto resolver... . If an evaluation is performed, only the
currently visible VDMs are evaluated. The result of the evaluation will be visible in different ways depending on
the type of the object the cell represents. A Restriction will show its evaluation state. A not evaluated Restriction
will be shown as " , whereas a possitively or negatively evaluated Restriction will show # | or # respectively.
A Constraint will always show a # |, since it will produce an error, if the condition is not met. If no value for

an attribute can be calculated, a :# is shown in the corresonding cell to indicate that the attribute has no value at
all under the current configuration.

Lastly it is even possible to perform transformation of the visible VDMs. Use the Transform all models button to
perform transformation. See Section 5.9, “ Variant Transformation ” for detailed information.

The Matrix shown in the editor can be exported to various output formats using the Export Matrix... action from
the context menu. The dialog, which opens, allows the user to chose the output format and location for the export.

Note
The Export Matrix... action is available only, if the pure::variants - Connector for Reporting with BIRT
isinstaled.

153

Views

Figure7.25. Export Matrix Dialog

a8 Export Matrix O *
Matrix Export BB
Export Matrix to specified output file n n
Report
(®) Standard Report Template (O Customized Report Template
Report Template: Fhrrsn.
Save ANT Build File... Save Report Template...
Output
Output Format: @ HTML Documents v

Output File: ‘ C:\Users\PubIic\MatrixlhtmI Browse...

Open file after export

@

The action export the visible content of the matrix editor, it does even take the expansion state of a element into
acount. Meaning collapsed elements and attributes will not be visible in the export result. As well as filtered
elements and varaints not opened in the editor.

In the dialog a custom report template can be selected. As a starting point we recommend to use the stadard report
template, which can be saved with the Save Report Template.... After customizing the report template, it can be
used for future matrix exports.

Note

The template contains a table, which is named "Matrix". This table is the entry point for the matrix
exporter. The table can be modified, but there has to be a variant column, which defines the the layout
for the columns inserted by the exporter. Which column is the variant column is defined with a user
property on the table. Name of the property is"VariantColumn", type is integer. The value is the index
of the variant column. The index is 0 based, so third column hasindex 2. This column is replaced by the
exporter with the necessary variant columns.

The Save ANT Build File... button generates an ANT Build file, which can be used to run the report generation in
head less mode automatically by any build system. See Section 6.14, “External Build Support (Ant Tasks)”

The generated build file uses the same tree and table layout like currently configured in the confguration space
editor, including model item visibility and expansion state for the shown model data. Elements not visible due to
an applied filter will not be visiblein the report if you run the generated ANT build file.

7.4. Views

7.4.1. Attributes View

The attributes view shows for aVDM the available attributes of the associated Feature and Family Models. The
user can set the value of non-fixed attributes in this view by clicking in the Value column of an attribute. If no
value is set for an attribute then the value set in the associated Feature / Family Model is shown in grey in the
Value column. This view may also be filtered to show only the attributes of selected features and/or where no
value has been set.

154

Visualization View

Figure7.26. Attributes view (right) showing the attributesfor the VDM

Berlinwvdm 22 = O || E Attributes i3 O v o=
w v U (F) Weather Station Attribute

Value

!
. v v | (F) Sensors —| Temperature Sensor
i o

max &0
w] 3 (F) Temperature Sensor =

* max = 60"
i o + Wind Speed Sensor

J‘? E) Color +| Sensors
w] ¥ (F) Wind Speed Sensor =
i o
13 (F) Air Pressure Sensor
v 1 (F) Languages
| ? Fy Warnings

< >
i Feature Models Farnily Models <

7.4.2. Visualization View

The model editors and most of the views support named layouts and filters. The Visualization view shows all
named layouts and named filters defined in the current Eclipse workspace (see Figure 7.27, “Visualization view
(left) showing 2 named filters and 2 named layouts’).

Figure 7.27. Visualization view (left) showing 2 named filtersand 2 named layouts

& Variant Management - Weather Station Example/Demoxfm - Eclipse SDK - O X
File Edit Mavigate Search Project Proleg Run 5L Window Help
il G ® & % - &F - B rn‘:l Variant Mana...
E‘l B - - f=1 - 5 Java
¢ %|Fa s
2, Variant Projects 52 =8 Demoafm &2 =8
=
2 <:==';> = Unique Name Visible Na... —
~ T2 Weather Station Example ~ Demo Demo a
(= input FAl Feature A1 =
[reports F A2 Feature A2
(& script F_B1 Feature B1
(& Variants FB2 Feature B2
Dem.o.xfm. _ Grouph Group A
manipulation.js GroupB Group B
[E] Readme.bd
WS.ccfm
WSadfrm =
5= Outline | & Visualiz 52 =0
=

~ [Table Layouts
= Unigue ID and Name
= Unigue and Visible Name
& Tree Layouts
v :’-'=:{> Filters
= B'sonly
- A'sonly
[Matrix Variant Filters

Tree |[5] Table | =8 Graph| €@ Constraints

o® 7 0

= WA

155

Search View

When the Visualization view is opened, thefirst level of layouts and filtersis expanded. To expand or collapse the
visualizations manually use the "Expand.." and "Collapse.." buttons in the tool bar of the view. Additional filters
and layouts may be imported from afile by choosing "Import" from the context menu. To export al visualizations
listed in the Visualization view choose "Export" from the context menu. Exported visuaizations are stored in afile
which can be imported into another Eclipse installation or shared in the project's team repository. Visualizations
can be applied either by double clicking on the name of the visualization or by choosing "Apply Item" from the
context menu of a visualization. Other actions on visuaizations are Delete and Rename by choosing the corre-
sponding context menu entries.

Three top-level categories are available in the visualization view. These are Filters, Table Layouts and Tree
Layouts . The corresponding items can only be created in the editors. See the section called “ Table Editing
Page” , the section called “ Tree Editing Page” and Section 6.9, “ Filtering Models” for information on it. Tree
Layouts can only be applied to Editors Tree Viewers, Table Layouts to Editors Table Viewers and Filters to all
pure::variants Model Editors. Note that some filters may not work as expected on different models. For example
aVariant Modéel Filter, filtering on selections will not work for a Feature Model Editor.

Additionally the layout and filter items may be organized within categories. Layouts or filters, created once appear
at first directly below their top-level category. The view allows to create a category by choosing " Create Catego-
ry..." from the context menu on a parent Category. The context menu provides an action "Move To" on an item
selection, which allows to move it to any desired category.

7.4.3. Search View

Feature and Family Models can be searched using the Variant Search dialog. The Variant Search view shows the
result of this search and is opened automatically when the search is started. The search results arelisted in atable
or in atree representation.

The tree representation structures the search results in a simple tree. The first level of the tree lists the models
containing matches. On the second level the matched elements are listed. The next levelsfinaly list the matched
attributes, attribute values, restrictions, and constraints.

Figure 7.28. Variant Search View (Tree)

J.-. Search 52 Q:}Q' J.-. > B laz I:\l) = = H
5 matches found in all Models for "*door™
v alinkedccfm (2 matches)

f# Door
& psiclass: DoorClass
w alinkedfrm (1 match)
F) doorfeature
w Door (1 match)
F) Door
w Room (1 match)
= Doors

Behind every element in the tree that is a root element of a sub-tree the number of matches in this sub-tree is
shown. Double-clicking on an item in the tree opens the corresponding model in an editor with the corresponding
match selected. The search results can be sorted alphabetically using the button " Sort by alphabet" in the tool bar
of the Search view.

By pressing button "Switch to Table" the table representation of the seach results is enabled. The table shows the
matched moddl items in aflat list. Double-clicking on an item in the list opens the corresponding model in an
editor with the corresponding match selected. The search results can be sorted aphabetically by clicking on the
"Label" column title.

156

Outline View

Figure 7.29. Variant Search View (Table)

" Search 53 o - r% < =5
5 matches found in all Models for "*door*”

Label

2 Door
{3 psiclass: DoorClass

F) Door

& Doors

F) doorfeature

A search result history is shown when the button " Show Previous Searches' in the tool bar of the search view is
pressed. With this history previous search results can be easily restored. The history can be cleared by choosing
"Clear History" from the " Show Previous Searches' drop down menu. Single history entries can be removed using
the "Remove" button in the Previous Searches dialog.

Note

The history for many consecutive searches with alot of results may lead to high memory consumption.
In this case clear the whole history or remove single history entries using the Previous Searches dial og.

A new search can be started by clicking on button " Start new Search".

For more information about how to search in models using the Variant Search see Section 6.7, “ Searching in
Models” .

7.4.4. Outline View

The Outline view shows information about a model and allows navigation around a model. The outline view for
some models has additional capabilities. These are documented in the section for the associated model editor.

7.4.5. Problem View/Task View

pure::variants uses the standard Eclipse Problems View to indicate problemsin models. If more than one element
is causing a problem, clicking on the problem selects the first element in the editor. For some problems a Quick
Fix (see context menu of task list entry) may be available.

7.4.6. Properties View

pure::variants uses the standard Eclipse Properties View. This view shows important information about the se-
lected object and allows editing of most property values. To open the view chose menu Window->Show View-
>Properties.

157

Properties View

Figure 7.30. Propertiesview for a feature

= Properties &2 B~=~"°=0
fy Warnings

General Unique ID | iBFyOWLYHFpADBY]X

Description | Unique Name | Warnings |

Visible Name |Warnings |

Class/Type | psifeature | ps:feature ~ |

(O Mandatory (® Optional () Alternative Oor

Variation Type
P [Default Selected Range: [0,n]

Figure 7.30, “Properties view for afeature” shows the properties view after a feature was selected in the Feature
Model Editor. At the left side there are selectable tabs, each containing a set of properties that logically belong
together. Usually, tabs General and Description are shown. The middle area of the properties view presents the
properties for the active tab.

The properties view depends on the selection in the workbench made by the user. For instance, selecting afamily
element like a component allows to edit unique and visible names, whereas for a selected relation the type and
the relation targets can be changed in the General tab. At the moment, general properties of elements, relations,
attributes, attribute values and restrictions can be modified and each of them can have descriptions given in the
Description tab (see Figure 7.31, “ Description tab in Properties view for arelation”).

Figure 7.31. Description tab in Propertiesview for arelation
! Properties i3 E |
fy Warnings

General

Description

Propertiesthat are edited won't be applied until the edited field loses the input focus or the ENTER key is pressed.
That allows you to discard the current change in atext field with the ESCAPE key if you like.

If aVDM Editor is active in the workbench and an attribute of the variant is selected then the properties view
allowsto define the value of the attribute for that variant.

Figure 7.32. Propertiesview for a variant attribute

1 Properties 2 B~~~ =0
= Count = '5’

General Unique ID | iwze_PwlSWGmxTuvx

Description Marme | Count v|

Is []Fixed []Inheritable

Type | pstinteger v|

‘u’aluel 3 |

158

Relations View

For the visible name of features and family elements as well as for descriptions it is possible to specify text
in different languages. See Section 6.12, “ Using Multiple Languages in Models ” for more information about
language support. For formatted text editing of descriptions see Section 7.5.1, “ Common Properties Page” .

7.4.7. Relations View

The Relations view showsthe relations of the currently selected element (feature/component/part/source element)
to other elements. The relations shown in the view are gathered from different locations. The basic locations are:

Model Structure From the model structure, the relations view gathers information about the parent
and child elements of an element.

Element Relations From the relations defined on an element, the relations view gathers information
about the elements depending on the selected element according to the defined rela-
tions. Related elements can be elements from the same model or from other models.
If arelation to an element of another model cannot be resolved, it may be necessary
to explicitly open the other model to let the relations view resolve the element.

Restrictions From the restrictions defined on an element or on a relation, property, or property
value of the element, the relations view gathers information about the elements ref-
erenced in these restrictions. According to the language used to formulate the re-
striction, pvSCL, the relations view shows the referenced elements below the entry
"Simple Constraint Language'.

Constraints From the constraints defined on an element, the relations view gathers information
about the elementsreferenced in these constraints. According to the language used to
formulate the constraint, pvSCL, the relations view shows the referenced elements
below the entry "Simple Constraint Language".

Element Properties From the properties of an element, the relations view gathers information about
mapped features. For this purpose there must be a property with the vaue type
"ps:feature”. Mapped features can be elements from the same model or from other
models. If the mapped feature is an element of another model, it may be necessary
to explicitly open the other model to let the relations view resolve the element.

Therelations view can be extended to view other relations than the basic rel ations described above. Please seethe
pure::variants Extensibility Guide for more information about extending the relations view.

Double-clicking on arelated element shown in the Relations View selects that element in the editor. The small
arrow in the lower part of the relation icon shows the direction of the relation. This arrow aways points from

the relation source to the relation destination. For some relations the default icon — is shown. The number in
parentheses shown after an element's name is the count of child relations. So, in the figure below the element has
onerequiresrelation indicated by (1) .

159

Result View

Figure 7.33. Relationsview (different layouts) for feature
with a ps.requiresto feature 'Main Component Big'

Relations &2 Bt~ 0O Relations &2 o3~ — O

arent (1)

w 4 Requires (1) ~ [F) Main Big Component (2)
F! Main Big Component = References
Simple Constraint Language (2) & Requires

F! Temperature Sensor (1)
Fy. Warnings (2]

F) Weather Station (1)

F) Wind Speed Sensor (1)

Relations 53 B ¥ T O Relations i3 Ejeg~ T O
Type Element Elernent Type
&= |s Referenced By Warnings F Main Big Component Requires, References
= References Main Big Component, Wind Speed Se|| (F) Wind Speed Sensor References
@ Requires Main Big Component | & Heat References, Children
Parent Weather Station F) Temperature Sensaor References
Children Heat, Gale / Strong Wind F) Gale / Strong Wind Children
Fp Warnings |s Referenced By, References
F Weather Station Parent
< >l < >

The Relations view is available in four different layout styles: two tree styles combined with two table styles.
These styles are accessed viaicons or amenu on the Relations view toolbar.

The relations view supports filtering based on relation types. To filter the view use the Filter Types menu item
from the menu accessible by clicking on the down arrow icon in the view's tool bar.

Attribute values of type "ps:url” are shown aslinksto external documentsin therelationsview. A double-click on
the appropriate entry opens the assigned system application for the referenced URL .

7.4.8. Result View

The result view shows the results of model evaluation after a selection check has been performed. In full config-
uration mode, it lists all selected Feature and Family Model elements representing the given variant. In partial
configuration mode, it lists both selected and open Feature and Family Model elements of the given variant.

The result view also provides a special operation mode where, instead of a result, the difference (delta) between
two results are shown, similar to the model compare capability for Feature and Family Models.

Toolbar icons allow the view to be shown as atree or table (&), allow the sort direction to be changed (1%),
and control activation/deactivation of the result delta mode (&).

Filtering is availablefor thelinear (tablelike) view, (37). The Model Visibility item in the result view menu (third
button from right in toolbar) permits selection of the models to be shown in the result view.

The result view displays a result corresponding to the currently selected VDM. If no VDM is selected, the result
view will be empty. The result view is automatically updated whenever aVDM is evaluated.

160

Result View

Figure 7.34. Result View

52 Result &1 EX}:?'EVDE
F! Weather Station L
w (F) Languages

F! German
w (F! Main Big Component
@ Count="5%
~ (F) Temperature Sensor
@ max = 60"
@ warn = '43'
~ (F) Wind 5peed Sensor
@ speed = 80
w (F) Warnings
& Requires: "Main Big Component”
Fi Gale / Strong Wind
F! Heat
~ i HTML Weather Station
v [WeatherStationHTML
@ sredir= "
w dir=""
da='css'
v 3 css
o sredir= s
o dir="./css'
v dff eccss imports
W ps:file: imports.css
file = 'imports.css’
& type = 'misc’
v @ sccss main
W ps:file: main.css
@ file = 'main.css’
@ type = 'misc’
v & eccss pressure
W ps:file: pressure.css
o file = 'pressure,css’ ha

Result Delta Mode

The result delta mode is enabled with the plus-minus button (&) in the result view's toolbar. In this mode the
view displays the difference between the current evaluation result and a reference result - either the result of the
previous evaluation (default) or an evaluation result set by the user as a fixed reference . In the first case, the
reference result is updated after each evaluation to become the current evaluation result. The delta is therefore
always calculated from the last two evaluation results. In the second case the reference result does not change. All
deltas show the difference between the current result and the fixed reference result.

The fixed reference can be either set to the current result or can be loaded from a previously saved variant result
(a.vrmfile). The reference result is set from the result view menu (third button from right in toolbar). To set a
fixed result as reference use Set current result as reference . To load the reference from afile use Load reference
result from file . To activate the default mode use Release reference result . The Switch Delta Mode submenu
allowsthe level of delta details shown to be set by the user.

161

Impact View

Figure 7.35. Result View in Delta Mode

55 Result 23 B A3 &0
~ 5 Weather Station
w &) Sensors
@ Count='3"<='97
%) Air Pressure Sensor
v % Ternperature Sensor
& max= 60" <= "
% warn = '45' <= "
v 5 Wind Speed Sensor
= speed = '80'
v &) Warnings
) Gale/ Strong Wind
¥ Heat

Iconsare used to indicateif an element, attribute or relation was changed, added or removed. A plussign indicates
that the marked item is only present in the current result. A minus sign indicates that the item is only present in
thereferenceresult. A dot sign indicates that the item contains changesin its properties or its child e ements. Both
old and new values are shown for changed attribute values (left hand side is new, right hand side is old).

7.4.9. Impact View

Variant description models are used to configure variation points in pure::variants. These vdms are connected
to a configuration space, which lists all input models. Variation points can be either feature-based or manually
configured. Thefeature-based configuration is used to automatically configure variation points based on selections
of features. The feature-based configuration depends directly on the inout models of the configuration space.
Changing the input models may have an impact on the existing variation point configurations.

The impact view shows possible impacts on the variant configurations while changing the input models.

To open the Impact View use the Show View -> Impact View action form the Window menu.

162

Impact View

Figure 7.36. Open Impact View

& Variant Management - Eclipse SDK - O X
File Edit Mavigate Search Project Prolog Run 50L | Window Help
I~ C ®m® Q- 3 - (=] REiWindow ~ B |—n‘:| Variant Mana... 7
New Editor
"2, Variant Projects 53 25 ¥ =0 . = 0|Er & =8
= Hide Toolbar .
== Hierarchical Variant Example Mo variants result
w 22 Weather Station Bxample Open Perspective > available.
(& input Show View > 5 Attributes
== reports
(= script Customize Perspective... D:ﬂ Eokiars
@Vanants Save Perspective As... L) @i
Demouxfm Reset Perspective... 42 _History
gﬂar;lpulai:tnn.ﬁ Close Perspective ® Iz
eadme. =
WS.ccfm Close All Perspectives FF Ll e
e [E Problems Alt+Shift+Q, X
Wsafm Navigation L - -
El Properties
Preferences Relations
55 Result
& Tasks
?ﬁ Variant Projects
B2 Outline &2 .6 Visualization =0 G Visualization
An outline is not available, Other.. Alt+Shift+Q, Q
Relations &1 =08

Mo relations available.

A

After opening the view work on the input models can be started. The impact analysis is disabled by default and
needs to be explicitly enabled for each input model, which shall be considered by the impact analysis. To enable

the analysis open an input model and click on the Enable Imput Analysis button (). The initial analysis is
performed now for all variant models, which use theinput model. The impact view showsthe state of each variant
model after the analysisis done. There are 5 different states:

Z thevariant is currently analysed by the impact analysis

« the variant is valid and not changed by the input mode! changes
s thevariant isvalid but changed by the input model changes

@ thevariant isinvalid

the variant is deactivated

The impact is calculated automatically for every change on the input models, for which the impact anaysis is
activated. With the LU button the automatic calculation can be paused, if the user is performing alot of changes

and can be resumed after the changes are done. Reseting the impact analysisis triggered with the 9 putton. This
removes the current analysis result and starts a fresh calculation of the impact. The result is the same as enabling
the impact claculation the first time on the current state of the input models.

163

Impact View

Figure 7.37. Impact Calculation Result

-, Impact &2 55 Result| 2 [0 | C§.“P =g
@ Athen
@ Dubai
@ Hamburg
@ Magdeburg
@ NewYork
@ Prag
@ Stuttgart
w) Ankara
w (F) Element Changed: Heat
Fi Mamne Changed: Heat] <= Heat
Berlin
Bern
Lendon
Oslo
o Wien
&% Madrid

-]
-]
=]
@

Figure Figure 7.37, “Impact Calculation Result” shows an example result for the impact analysis. If there are
problems the result contai ns details on the problem. The same appliesto changesin the variant description models.

For changes it is possible to see more details with the action Show in Text Compare from the context menu of
one change.

The context menu of the impact view allows the user to change the scope of the impact analysis. The Actionsin
sub menu Add Variant Models allows the user to add additional variant models to the analysis. Manually From
Workspace... lets the user chose the variants to be added to impact analysis from all variant models currently
imported to the workspace. Automatically All Related From Workspace does check all variant models currently
imported to the workspace and adds all variants using the input model currently used in the impact view. Related
from Server Projects |ets the user decide which variants to import from all related server projects.

Remove Variant Model removesthe selected modelsfrom theimpact anaysis. Deactivate deactivatesthe analysis
for the selected variant models. Thisaction keepsthem in theimpact view and just ignoresthem during cal culation.

164

pvSCL IDE

Figure 7.38. Impact View Context Menu

-+, Impact 3

@ Athen
@ Dubai

IE',;.E'::F‘\esult i} o | C-;><“"? =8

@ Hamburg
@ Magdeburg
@ NewYork

@ Prag

@ Stuttgart

w 0 Ankara

a2
w (F) Element Changed: Heat

-]

-]

O
0 d
-] 1“'
N
WP
« R

Bern

Fi Mamne Changed: Heat] <= Heat
Berlin

Add Variant Models ...
Rernowve Variant Model
Deactivate

Open Variant Model

Goto ..

Show in Text Compare

Expand All
Collapse All

Coverage As >

Navigation from the information shown in the impact view to the corresponding elements or models is enabled
using the Go to ... action from the context menu or by just double clicking the elements or models in the impact

view.

7.4.10. pvSCL IDE

Writing complex pvSCL rules in the modal Code Editor dialog is notvery comfortable since it is not possible to
look at your feature models until you closed the dialog. To avoid that you can use the pySCL IDE view to prepare

the pvSCL rules and than just copy them to the Code Editor after you have finished them.

Essentially, the pvSCL IDE isalive expression evaluator which can be used to successfully developed large and

complex expressions with it.

Itisused in three steps.

165

pvSCL IDE

Figure 7.39. Open pvSCL IDE View

n | Window Help

| Mew Window - - -
MNew Editor
Hide Toolbar
Open Perspective »
Show View > [Attributes
Customize Perspective... il Bookmarks
Save Perspective As... o
Reset Perspective... El Console Alt+5Shift+Q, C
Close Perspective @] ErrorLog Alt+Shift+Q, L
Close All Perspectives A Elistory
5= Qutline Alt+Shift+Q, O
T > | Bi Problems Alt+Shift=Q, X
Preferences =l Properties
Relations
55 Result
| Tasks
EL Variant Projects
&g Visualization
Other... Alt+Shift+Q, O

Step 1: Open the pvSCL IDE view. Go to Window -> Show View -> Other and chose pvSCL IDE in the opening
diaog. After ending this dialog the pvSCL IDE view opens.

Figure 7.40. Open pvSCL IDE View

121 Show View | s

type filter test

= Report Design -
= Team
w [Variant Management
5 Attributes
B Console
|Tn_| Element Cluster
AE| History
I, Impact
[5) pvSCLIDE
Relations
55 Result
l5] Selection State Cluster
B Variant Projects
&d Visualization v

Step 2: Select an element as expression context in a variant model. This initializes the evaluation ontext for the
pvSCL IDE. Thisusually should betheelement, whichwill bethe parent of the constraint, restriction or calcul ation.

166

Variant Projects View

Figure 7.41. Assign context element to pvSCL IDE

[% (# Daytime Running Light
~ v 7 (F) Driver Assistance
] ¥ F) Automat « Select
V] ¥ F) Automat] Deselect
~ v K F) Cornerini

Exclud
(1% © Adap cuce

M %) Static | Deselect Subtree
+ v 1 (F) Regions @ Exclude Subtree
v K (F) EMEA

C1% © North Ameri Load Selection from VDM/VRM...
Delete
Copy Url

Bookmark

Filter...

T

Clear Filter
Custom Project Preview Filter

Expand All
Collapse All
Tree Layout »

Show Metrics
pvSCL IDE » Assign VDM Ctrl+5
|T=_1 Run JavaScript... Assign Model Element Ctrl+6
Assign VDM and Model Element Ctrl+7

To do so, right-click on the element, select pvSCL IDE --> Assign VDM and Model Element. Alternatively you
can press [Ctrl]+[7].

Step 3: Enter your expression in the Code Editor part of the pySCL IDE.

Figure7.42. The pvSCL IDE View

LIl Bookmarks |) Properties |] Tasks | (% Problems | £l History | &l Console | [2] puSCL IDE i3

Evaluation Context

Assigned Variant: | Demo | Assigned Model Element UniquelD: itPGnMr_SqurS63-v Rule Type: | Calculation ~
Code Editor Evaluation Result
CONTEXT->pv:SelectedChildren()->pwv:Iterate (1;0=""|o+i->pv:Name (}+"\n'") AutomaticLight

HighLowBeamDetection

CormeringLights

CorneringStaticlights

Enter the text of your pvSCL expression. You can use auto-completion using [Ctrl]+[Space], as usua. Y ou aso
have on-the-fly syntax and error highlighting. The expression in the Code Editor is evaluated on the variant model
immediately as you type. The result appears on the right side instantly.

Make sure you use the rigth rule type setting. The rule type constraint and restriction have a result of type
ps:boolean only. Calculations on the pther hande can aso have results of other types.

If the evaluation of your expression would generate error, warning or information marker the Evaluation Result
control will indicate that with a small marker at the top left corner of the control.

7.4.11. Variant Projects View

The Variant Projects View (upper |eft part in Figure 7.43, “The Variant Projects View”) shows all variant man-
agement projects in the current workspace. Projects and folders or models in the projects can be opened in a
tree-like representation. Wizards available from the project's context menu allow the creation of Feature Models,
Family Models, and Configuration Spaces. Double-clicking on an existing model opens the model editor, usually
shown in the upper right part of the perspective. In Figure 7.43, “The Variant Projects View” one editor is shown
for avariant description model with some features sel ected.

167

Model Properties

Figure 7.43. The Variant Projects View

% Variant Management - Hierarchical Variant Example/Train/WrengTrain.wdm - Eclipse SDK — O b4
File Edit Mavigate Search Project Prolog Variant Run 50l Window Help

Bt C ®FK Q- & - E§|| B -y =~ - - =18 4 - [| I2) Variant Mana...
| o Gol@| & @ & &' o
"= Variant Projects &4 A& vE0 WrongTrain.vdm &2 =0
=
a ¥ EﬁHierarchicalVanantExampIe ~ v U {F TrainFeatures _
o= v 2 Train 4 There has to be at least one wagen in the train: Wagons->pw:Children()-» pw:Size() » 0 B
& Trainwvdm v 1 (F) Locomotive g
WrongTrainawvdm v 1 # Wagons
=8 Wagon
x| genhtrml.xsl
|=| Readmetbd
Train.ccfm
Train.xfm

Wagon.ccfm
v Wagonxfrm
~ [F) WagonFeatures
F) First Class Section
F) Double-Stack
F! Gas Tank
~ [Weather Station Example
[= input
= reports
(= script
= Variants
Demoxdm Feature Models| i Family Models
manipulation.js
Read:’ne.bct ! % Problems % ¥ =08
W WS.ccfm 0 errors, 1 warning, 1 other
~ @ HTML Weather Station Description -
f# WeatherStationHTML
v W5.xfm
~ (F) Weather Station
F) Sensors
F! Languages
Fy. Warnings

Resource Path Location Type
& Warnings (1 item)
i Infos (1item)

A

7.5. Model Properties

pure::variants models have a set of properties. Each model has at least a name. Optionally it can have an author,
version, description, and a set of custom properties. Model properties are set by right-clicking on a model in the
Variant Projectsview and choosing Properties from the context menu. Depending on the kind of model and the
registered extensions, several property pages are available.

7.5.1. Common Properties Page

The common properties are provided on the M odel page (see Figure 7.44, “Feature Model Properties Page”).

The common properties of all models are the name, author, version, and description of the model. Additionally
the description type can be changed. Available types are plain text and HTML text. Models created with aversion
lower than 3.0 of pure::variants usually have the plain text type. Setting to HTML text description type allowsto
format descriptionswith styleslikebold anditalic or with text align likeleft, center and right (seeagain Figure 7.44,
“Feature Model Properties Page”). For a full set of HTML formatting possibilities open the extended HTML

description dialog by pressing the button in the tool bar of the description field.

168

General Properties Page

Figure 7.44. Feature Model Properties Page

% Properties for WS.axfm O X
type filter text Model =l g - -
Resource
ID: 1ZDYEoOIvFKXojv_z

|Tn_| Access Rights
|T=_| General Properties

%) Mode Mame: | Example |
51 pvSCL Code Library Author. | user |
Run/Debug Settings Version of Model: | 1.0 |
Description Type: | HTML-Text w

Description

An example of feature model.|

m A Restore Defaults Apply

®

7.5.2. General Properties Page

Custom model propertiesare defined onthe Gener al Properties page (seeFigure 7.45, “ General Model Properties
Page’).

169

Inheritance Page

Figure 7.45. General Model Properties Page

% Properties for WS.axfm O X
type filter test General Properties =104 - -
Resource
lo] Access Rights Attribute # Type Value Add
:EJ General Properties % (o= neiet s ® 2007-01-01
':‘n—l Model _ + last_reviewer 1 pastring = Userl Remove
21 pvsCL Code Library + confidential 1 s:boclean * false
Run/Debug Settings F e
Remove value
Move up
Move down
Description
Confidential state of model,
m A Restore Defaults Apply
iy
@ Cancel

For each property a name, type, and value has to be specified. Optionally a description can be provided.

New properties are added by clicking on button Add or by double-clicking in the first empty row of the table.
Additional attribute values can be added by selecting the property and then clicking on button Add value . To
remove avalue select it and click on button Remove value . A whole property can be removed by selecting the
attribute and clicking on button Remove.

Asfor element attributes, model properties can also have alist type by simply adding square brackets ("[]") to the
type name, e.g. ps:string[] , ps.integer[] .

Special model properties, like the name, author, version, and description of the model usually configured on other

model property pages, are not shown in the General Propertieslist. To include these propertiesin the list, check
option "Include invisible propertiesin list".

7.5.3. Inheritance Page

The Inheritance pageisonly available for VDMs. It is used to select the models from which aVVDM inherits (see
Figure 7.46, “Variant Description Model Inheritance Page”).

170

Inheritance Page

Figure 7.46. Variant Description Modédl I nheritance Page

& Properties for Ankara.vdm O X
type filter text Inheritance - - -

2 iesourc; ht (i) Select the Variant Description Models from which to inherit.

o Access Rights

IT:‘:I General Properties Available Models Inherited Models

Eﬂ niEEETE Name File Path » Name File Path

o] Model

Run/Debug Settings Stuttgart /Weathe Magdeburg [Weather ...

) Prag /Weathe
MewYork /Weathe
Wien /Weathe
Berlin /Weathe
London /Weathe == Move up
Osla [Weathe Move d
Bern Weathe . fEE semn
Dubai /Weathe
Madrid /Weathe
Athen /Weathe
Paris /Weathe
1 Rom /Weather Station Example/Variants/Rom.vdm
[

£ Fa I =< >

Scope of models to show
(® Current Configuration Space () Current Project () Referenced Projects

Restore Defaults Apply

@

The left table shows the models which can be inherited. To avoid inheritance cycles models inheriting from the
current model are greyed out and can not be inherited. The right table shows the models from which the current
model inherits.

Models can be selected from the current Configuration Space, the current project, and referenced projects. See
Section 5.7, “ Inheritance of Variant Descriptions” for moreinformation on variant description model inheritance.

171

172

Chapter 8. Additional pure::variants
Extensions

The features offered by pure::variants may be further extended by the incorporation of additional software exten-
sions. An extensions may just contribute to the Graphical User Interface or it may extend or provide other func-
tionality. For instance an extensions could add anew editor tab for model editorsor anew view. The onlineversion
of this user guide contains documentation for additional extensions. Printable documentation for the additional
extensionsis distributed with the extensions and can be accessed from the online documentation via a hyperlink.

Currently available extensions can be found on our web site (https://www.pure-systems.com/purevariants/pure-
variants-connectors)

8.1. Installation of Additional pure::variants Extensions

Additional pure::variants extensions are distributed and installed in several ways:

* Installation froman Update Site Installation viathe Eclipse update mechanism is aconvenient way of installing
and updating pure::variants from an internet site. See task "Updating features with the update manager" resp.
"Updating and installing software" in the Eclipse Workbench User Guidefor detailed information on the Eclipse
update mechanism (menu Help -> Help Contents and then Workbench User Guide->Tasks).

Thelocation of the site depends on the pure::variants product variant. Visit the pure-systems web site (https:/
Www.pure-systems.com) or read your registration e-mail to find out which site is relevant for the version of
the software your are using. Open the page in your browser to get information on how to use update sites with
Eclipse.

 Archived Update Ste pure::variants uses also archived update sites, distributed as ZIP files, for offline instal-
lation into an existing Eclipse installation.

Archived update sites are available for download from the pure::variants internet update site. The location
of the site depends on the pure::variants product variant. Visit the pure-systems web site (https.//www.pure-
systems.com) or read your registration e-mail to find out which siteisrelevant for the version of the software
your are using. Open the page in your browser to get additional information on how to use update sites with
Eclipse. pure::variants archived update site file names start with updatesite followed by an identification of the
contents of the update site. The installation processis similar to the internet update site installation.

173

https://www.pure-systems.com/purevariants/purevariants-connectors
https://www.pure-systems.com/purevariants/purevariants-connectors
https://www.pure-systems.com
https://www.pure-systems.com
https://www.pure-systems.com
https://www.pure-systems.com

174

Chapter 9. Reference

9.1. Element Attribute Types

Table9.1. Supported Attribute Types

Attribute Type Description Allowed Values
ps:boolean boolean value true andfal se
ps:integer integer number avalid integer number of

format (' ox' [0-9a-fA-
FI+) | ([+17? [0-9]+)
ps:float floating point number avalid floating point number of for-
mat[+]? [0-9]+ ('.' [0-9]+)?
([eE] [+]7? [0-9]4)7
ps:string any kind of unspecific text any
ps:path path to afilein afile system any
ps:directory path to a directory in afile system any
ps:url aURL or URI any
ps:html HTML code any
ps: datetime date and time (e.g. any
in 1S0 8601 format)
ps:version aversion string (with wildcards) astring of format [0- 9] +
("0 [F0-91+ (.7 [¥0-9]+
("' [*0-9a-ZA-Z -1+4)?)?)?
ps:filetype file type identifier def ,inpl ,misc,app,undefined
ps:insertionmode value type of source el- bef ore and af t er
ement type ps:fragment
ps: element feature or family mod- avalid ID of an element
el element reference
ps:feature feature reference avalid ID of afeature
ps:class ps: class source element reference avalid ID of aps.class

source element

9.2. Element Relation Types

Relations can be defined between the element containing therelation on one side and all other elements of the same
or other models on the other side. In the following table, showing the supported element relations, the defining
element D isthe element on which the relation is defined, and EL isthelist of related elements E ... E, .

Note

Users can use their own custom relation types, which are ignored during evauation. Some of the sup-
ported and thus evaluated relation types exist only since a specific release version of pure::variants. In
previous versions they are treated as customer relations and are not evaluated at all. So, using models
containing such relations in previous versions of pure::variants, which does not support them yet, can
lead to invalid variant configurations. To avoid this source of error, the user is responsible to ensure
that these models are not used in previous versions. One possibility for that isto add a pySCL version
guard constraint in each feature or family model, which uses such a new relation. See the section called

“pv:PVVersion()” for that.

175

Element Relation Types

Table 9.2. Supported relations between elements (1)

Relation

Description

Logical equivalent

ps:requires(EL)

At least one element in EL hasto be se-
lected if the defining element is select-
ed.

Dimplies(Ejor..orEp)

ps:requiresAll(EL)

All elements in EL have to be selected
if the defining element is selected.

D implies(Ejand...andE)

ps:requiredFor(EL)

If at least one element in EL is selected,
then the defining element has to be se-
lected.

(Eqor..orEp)impliesD

ps:requiredForAll(EL)

If all elementsin EL are selected, then
the defining element has to be selected.

(Eqand...andE) impliesD

ps: conditional Requires(EL)

Similar to ps.requires, but the relation
is considered only for elements whose
parent element is selected.

D implies ((parentSel(E 1) impliesE
1) or...or (parentSel(E ;) impliesE
)) , where parentSel(root) = true

ps:recommends(EL)

Like ps:requires, but not trested as er-
ror if not complied.

Dimplies(Ejor..orEp)

ps:recommendsAll(EL)

Like ps:requiresAll , but not treated as
error if not complied.

Dimplies(Ejand...andE)

ps: recommendedFor (EL)

Like ps:requiredFor , but not treated as
error if not complied.

(Eqor..orEp)impliesD

ps:recommendedForAll (EL)

Like ps:requiredForAll , but not treated
as error if not complied.

(Eiand...andE) impliesD

ps: equalsAny(EL)

(available since
pure::variants 4.0.7)

If the defining element is selected, at
least one element in EL hasto be select-
ed. If the defining element is not select-
ed, none of the elementsin EL may be
selected.

Dequas(Ejor..orEy)

ps:equal sAll(EL)

(available since
pure::variants 4.0.7)

If the defining element is selected, all
elements in EL have to be selected. If
the defining element is not selected, not
al of the edlementsin EL may be select-
ed.

Dequas(Ejand..andEp)

ps: conflicts(EL)

If al element in EL are selected, then
the defining element must not be select-
ed.

(Erand...andE) impliesnot(D)

ps: conflictsAny(EL)

If any element in EL isselected, thenthe
defining element must not be selected.

(Eqor..orE,)impliesnot(D)

ps:discourages(EL) Like ps:conflicts, but not treated aser-|(E1and ... and E ;) impliesnot(D)
ror if not complied.
ps: discouragesAny(EL) Like ps:conflictsAny , but not treated as|(E or ... or E) impliesnot(D)

error if not complied.

ps:influences(EL)

The elements in EL are influenced in
some waly by the selection of the defin-
ing element. The interpretation of the
influence is up to the user.

ps:provides(EL)

The "inverse" relation to psirequires .
For all selected elementsin EL at least
one defining element hasto be selected.

Eimplies(Djor..orDy)

176

Element Variation Types

Relation Description Logical equivalent
ps: supports(EL) Like ps:provides, but not treated as er-|E implies(D 1 or ... or D)
ror if not complied.
Table 9.3. Supported Relations between Elements(11)
Relation Description Usefor Partner relation

ps.exclusiveProvider(id) |In a valid configuration at most|Concurrent implemen-| ps:requestsProvider
one exclusiveProvider or one set|tations for an abstract
of sharedProvider for a given id|concept.
is alowed. Thus, the relation de-
fines a mutual exclusion relation
between elements.

ps:sharedProvider(id) |In a valid configuration at most|Shared implementa-| ps:requestsProvider
one exclusiveProvider or one set|tions for an abstract
of sharedProvider for a given id|concept.
is allowed. Thus, the relation de-
fines a mutua exclusion relation
between elements.

ps:requestsProvider(id) [In a valid configuration for each| Request existence of an| ps:exclusiveProvider

requestsProvider with the giv-
en id there must be an exclu-
siveProvider or any number of
sharedProvider with the same id.
There may be any number of re-
questsProvider relations for the
sameid.

abstract concept.

ps: expansionProvider (id)

In a valid configuration at most
one expansionProvider for a giv-
en id is allowed. Thus, the rela
tion definesamutual exclusion re-
lation between elements.

Provides mechanism
for implementing varia-
tion points with default
solution.

ps:defaultProvider

ps. defaultProvider (id)

If an element marked as ex-
pansionProvider is additionaly
marked as defaultProvider for the
same given id and there is more
than one possible element claim-
ing to be an expansionProvider
for this id, then all default-
Provider areexcluded. If thereare
more than one defaultProvider se-
lected and no non- defaultProvide
r selected, one defaultProvider
must be chosen manually.

Provides mechanism
for implementing varia-
tion points with default
solution.

ps. expansionProvider

9.3.

Element Variation Types

Table 9.4. Element variation types and itsicons

Short name |Variation Type Description Icon
mandatory ps:mandatory |A mandatory element is automatically selected if its parent element| 1§
is selected.
optional ps:optional | Optiona elements are selected independently. ?

177

Element Selection Types

Short name |Variation Type Description Icon

aternative ps:alternative |Alternative elementsare organizedin groups. Exactly oneelement has| 4

to be selected from agroup if the parent element is selected (although
this can be changed using range expressions). pure::variants alows
only one ps:alternative group for the same parent element.
or ps:or Or elements are organized in groups. At least one element has to be|
selected from a group if the parent element is selected (although this
can be changed using range expressions). pure::variants allows only
one ps.or group for the same parent element.
9.4. Element Selection Types
Table 9.5. Types of element selections
Type Description Icon
User Explicitly selected by the user. Auto resolver will never change the selection state|]
of auser selected element.

Autoresolved | Anelement selected by the auto resolver to correct problemsintheelement selection.| .-
Auto resolver may change the state of an auto resolved element but does not deselect
these elements when the user changes an element selection state.

Excluded The user may exclude an element from the selection process (via a context menu).| g
When the selection of an excluded or any child element of an excluded element is
required, an error message is shown.

Auto Excluded |An element excluded by the auto resolver to correct conflicts. When the selection| &
of an excluded or any child element of an excluded element is required, an error
message is shown.

Non-Selectable |For a specific element selection the auto resolver may recognize elements as non-| 7
selectable. This means, selection of these elements aways resultsin aninvaid ele-
ment selection. For other element sel ections these elements may not non-selectable.

9.5. Predefined Source Element Types
Table 9.6. Predefined sour ce element types
Source Type Description Icon
ps.dir Maps directly to a directory. =
ps:file Maps directly to afile.
ps:fragment Represents a file fragment to be appended to another file. 5
ps: condxml Maps directly to an XML document containing variation points (conditional parts)| [s)
using X Path expressions.
Deprecated since 6.0.0, please use pvsclxml instead.
ps: condtext Mapsdirectly to atext document containing variation points (conditional parts) using| (s
XPath expressions.
Deprecated since 6.0.0, please use pvscltext instead.
ps: pvsclxml Maps directly to an XML document containing variation points (conditional parts)| [s)
using pvSCL expressions.
ps: pvscltext Mapsdirectly to atext document containing variation points (conditional parts) using| [s)

pvSCL expressions.

178

ps.dir

Source Type Description Icon

ps:flagfile Represents afile that can hold flags such as a C/C++ header file containing prepro-| (s
cessor defines.

ps: makefile Represents a make (build) file such as GNU make files containing make file vari-| (g
ables.

ps.classaliasfile | Represents a file containing an aias e.g. for a C++ class that can be concurrently | [5)
used in the same place in the class hierarchy.

ps:symlink Maps directly to a symbolic link to afile. 5

The following sections provide detailed descriptions of the family model source element types that are relevant
for the standard transformation (see Section 6.3.2, “ Standard Transformation ™).

All file-related source element types derived from element type ps.destfile specify the location of a file using
the two attributes di r and fi | e . Using the standard transformation the corresponding file is copied from <Con\
figSpacel nput Di r>/ <dir>/<file> tO <ConfigSpaceCQutputDir>/<dir>/<file> . Source element types de-
rived from ps:srcdestfile optionally can specify a different source file location using the attributes sr cdi r and
srcfile.|f oneor both of these attributes are not used, the valuesfromdi r andf i | e are used instead. The source
file location isrelative to the <Conf i gSpacel nput Dir> .

9.5.1. ps:dir

Attributes: dir [ps.directory]
srcdir? [ps.directory]

This source element type is used to copy a directory from the source location to the destination location. All
included subdirectories will also copied. The optional attribute sr cdi r ist used for directories that are located in
adifferent place in the source hierarchy and/or have a different name.

9.5.2. ps:file

Attributes: dir [ps.directory]
file [ps:path]
type [psfiletype]
srcdir? [ps.directory]
srcfile? [ps:path]
srcurl? [ps:url]

This source element type is used for files that are used without modification. The source file is copied from the
source location to the destination location. The optional attributessrcdi r and srcfil e are used for filesthat are
located in a different place in the source hierarchy and/or have a different source file name.

Theoptiona attributesr cur | isused to specify asource directory with an url. This supports basic authentification.
If this srcurl property is set srcdir isignored. The standard transformation supports the protocls http and https.

The value of attribute t ype should be def or i npl when the file contains definitions (e.g. a C/C++ Header) or
implementations. For most other files the type ni sc is appropriate.

Type Description
i mpl Thistypeisused for files containing an implementation, e.g. .cc or .cpp files
def Thistypeis used for files containing declarations, e.g. C++ header files. In the context of

ps:classalias calculations this information is used to determine the include files required
for agiven class.

m sc Thistypeis used for any file that does not fit into the other categories.
app Thistypeisused for the main application file.
undef i ned Thistypeisfor files for which no special meaning and/or action is defined.

179

ps:.fragment

9.5.3. ps:fragment

Attributes: dir [ps.directory]
file [ps:path]
type [psfiletype]
srcdir? [ps.directory]
srcfile? [ps:path]
node [ps:insertionmode]
content? [ps:.string]
encodi ng? [ps:.encoding]

This source element type is used to append text or another file to a file. The content is taken either from afile
if srcdir andsrcfile aregiven, or from astring if cont ent is given. If taken from a string, attribute encodi ng
can be used to specify the character encoding of the string content. The attribute node is used to specify the point
at which this content is appended to thefile, i.e. bef ore or af t er the child parts of the current node's parent part
arevisited. The default valueisbef ore .

9.5.4. ps:condxml

Attributes: dir [ps.directory]
file [ps:path]
type [ps:filetype]
srcdir? [ps.directory]
srcfile? [ps.path]
condi tionname? [ps.string]
copycondi tion? [ps:boolean]

Deprecated since 6.0.0, please use pvsclxml instead.

This source element type is used to copy an XML document and optionally to save the copy to afile. Specia
conditional attributes on the nodes of the XML document are dynamically evaluated to decide whether this node
(and its subnodes) are copied into the result document. The name of the evaluated condition attribute is specified
using the attribute condi t i onnane and defaults to condition . If the attribute copycondi ti on is not set to false,
the condition attribute is copied into the target document as well.

Note

Beforepure::variantsrelease 1.2.4 the attribute namespv. copy_condi ti on andpv. condi ti on_nane were
used. These attributes are still supported in existing models but should not be used for new models.
Support for these attribute names has been removed in pure::variants release 1.4.

The condition itself has to be avalid XPath expression and may use the XSLT extension functions defined in the
following namespaces. Calls to these functions have to be prefixed by the given namespace prefix followed by
acolon (":"),eq.F.

Table9.7. Registered XSLT Extensions

Namespace Pr efix Namespace
pv http://www.pure-systems.com/purevariants
pvpath http://www.pure-systems.com/path
pvstring http://www.pure-systems.com/string
xmits http://www.pure-systems.com/xmlts
dynamic http://exslt.org/dynamic
math http://exslt.org/math
sets http://exdlt.org/sets

180

ps:condtext

Namespace Prefix Namespace
strings http://exdlt.org/strings
datetime http://exslt.org/dates-and-times
common http://exslt.org/common
crypto http://exdt.org/crypto

For adescription of the pure::variants XSLT extension functions see Table 9.10, “Extension functions providing
model information” . For a description of the EXSLT extension functions see http://www.exslt.org .

In the example document given below after processing with an ps:condxml transformation, the resulting XML
document only contains an introductory chapter if the corresponding feature W t hi nt r oduct i on is selected.

Example 9.1. A sample conditional document
for usewith the ps:condxml transformation

<?xm version='"1.0"'?>
<t ext>
<chapter conditi on="Wthlntroduction">
This is sone introductory text.
</ chapt er >
<chapt er >
This text is always in the resulting xm output.
</ chapt er >
</text>

A special XML nodeis supported for calculating and inserting the value of an X Path expression. The name of this
nodeispv: val ue- of (Nnamespace"pv" isdefined as"http://www.pure-systems.com/purevariants"). Theexpression
to evaluate has to be given in the attribute sel ect . The pv: val ue- of node is replaced by the calculated value
in the result document.

Example 9.2. Example use of pv:value-of

Sour ce docunent :

<?xm version='"1.0"?>
<version xm ns: pv="http://ww. pure-systens. conl purevari ants">

<pv:val ue- of sel ect="pv:getAttributeVal ue(' Version','ps:feature','version')"/>
</ ver si on>

Resul t docunent :

<?xm version='"1.0"?>

<version xm ns: pv="http://ww. pure-syst ens. conl purevari ants">
1.0

</ ver si on>

9.5.5. ps:condtext

Attributes: dir [ps.directory]
file [ps:path]
type [psfiletype]
srcdir? [ps.directory]
srcfile? [ps:path]
encodi ng? [ps:.encoding]

Deprecated since 6.0.0, please use pvscltext instead.

Thissource element typeisused to copy atext document and optionally to savethe copy to afile. Special statements
in the text document are eval uated to decide which parts of the text document are copied into the result document,
or to insert additional text. If no text document encoding is given, then UTF-8 encoding is assumed.

The statements (macro-like calls) that can be used in the text document are listed in the following table.

181

http://www.exslt.org

ps:pvsclxml

Macro Description

PV: | FCOND(condition) Open anew conditional text block. Thetext in the block isincluded in the result-
PV: | FOONDLN(condiition) ing text output if the given condition evaluates to true. The opened conditional
text block has to be closed by a Pv: ENDCOND call.

PV: ELSEI FCOND(condition) | Thismacro can be used after apv: | FCOnD or Pv: ELSEI FCOnD call. If the condition
PV: ELSEl FOONDLN(of the precedi Ng PV: | FOOND Or PV: ELSEI FOOND is failed, the condit_ion of this
PV: ELSEI FCOND is checked. If it evaluates to true, the enclosed text is included

condition) ! .
in the resulting text output.
PV: ELSECOND This macro can be used after a Pv: | FCOND or Pv: ELSEI FCOND call. If the condi-
PV- ELSECONDLN fcion of th(_a preceding PV: 1 FOOND OF PV: ELSEI FOOND isfailed, theenclosed text is
included in the resulting text outpuit.
PV: ENDCOND Close a conditional text block. This macro is allowed after a Pv: | FCOND |,
PV: ENDOONDLN PV: ELSEI FCOND, Or PV: ENDCOND call.
PV: EVAL(expression) Evaluate the given expression and insert the expression valueinto the result doc-

ument.

PV: EVALLN(expression)

These macros can occur everywhere in the text document and are directly matched, i.e. independently of the
surrounding text. The conditions of Pv: I FCOND and PVv: ELSEI FCOND and the expression of Pv: EVAL are the same
as the conditions described for source element type ps:condxml (see Section 9.5.4, “ ps:.condxml ” for details).

Conditional text blocks can be nested. That means, that a Pv: | FCOND block can contain another pv: | FCOND block
defining a nested conditional text block that is evaluated only if the surrounding text block is included in the
resulting text output.

For each macro a version with suffix LN exists, i.e. Pv:| FCONDLN , PV: ELSEI FCONDLN , PV: ELSECONDLN
PV: ENDCONDLN,, and PV: EVALLN. These macros affect thewholelineand are only allowed if thereis no other macro
call in the same line. All characters before and behind such a macro call are removed from theline. It is alowed
to mix macros with and without suffix LN, e.g. Pv: | FCONDLN can be followed by Pv: ENDCOND and PV: | FCOND by
PV: ENDCONDLN .

In the example document given below after processing with an ps:condtext transformation, the resulting text doc-
ument only contains an introductory chapter if the corresponding feature W t hi nt r oduct i on is selected.

Example 9.3. A sample conditional document
for use with the ps.condtext transformation

PV: | FCOND(W't hl nt r oduct i on)
This text is in the resulting text output
if feature Wthlntroduction is sel ected.
PV: ELSEI FCOND
This text is in the resulting text output
if feature Wthlntroduction is not selected.
PV: ENDCOND
This text is always in the resulting text output.

9.5.6. ps:pvsclxml

Attributes: dir [ps.directory]
file [ps:path]
type [ps:filetype]
srcdir? [ps.directory]
srcfile? [ps:path]
condi tionname? [ps:string]
copycondi tion? [ps:boolean]
val uesubstitution? [ps:boolean]

This source element type is used to copy an XML document and optionally to save the copy to afile. Special
conditional attributes on the nodes of the XML document are dynamically evaluated to decide whether this node

182

ps:pvscltext

(and its subnodes) are copied into the result document. The name of the evaluated condition attribute is specified
using the attribute condi t i onnanme and defaults to pv:condition . If the attribute copycondi ti on isnot set to false,
the condition attribute is copied into the target document aswell. If the attribute val uesubsti t uti on isset totrue
, the content of all attribute values of the XML document will be handled as Section 9.5.7, “ ps:pvscltext ” .

The conditionitself hasto beavalid pvSCL expression. For details on writing pySCL expressions, see Section 9.7,
“Expression Language pvSCL” .

In the example document given below after processing with an ps:pvsclxml transformation, the resulting XML
document only contains an introductory chapter if the corresponding feature W t hi nt r oduct i on is selected.

Example 9.4. A sample conditional document
for use with the ps:pvsclxml transformation

<?xm version='"1.0"'?>
<text xm ns:pv="http://ww. pure-systens.com purevariants">
<chapt er pv:condition="Wthlntroduction">
This is sone introductory text.
</ chapt er >
<chapt er >
This text is always in the resulting xm output.
</ chapt er >
</text>

A special XML node is supported for calculating and inserting the value pvSCL expression. The name of this
nodeispv: eval (namespace"pv" isdefined as"http://www.pure-systems.com/purevariants"). Thepv: eval node
isreplaced by the calculated value in the result document.

Example 9.5. Example use of pv:eval

Sour ce docunent

<?xm version="1.0'?>

<version xm ns: pv="http://ww. pur e-syst ens. conl purevari ants">
<pv: eval >Ver si on- >ver si on</ pv: eval >

</ ver si on>

Resul t docunent

<?xm version="1.0"?>

<version xm ns: pv="http://ww. pur e-syst ens. conl purevari ants">
1.0

</ ver si on>

9.5.7. ps:pvscltext

Attributes: dir [ps.directory]
file [ps:path]
type [psfiletype]
srcdir? [ps.directory]
srcfile? [ps:path]
encodi ng? [ps.encoding]

Thissource element typeisused to copy atext document and optionally to savethe copy to afile. Special statements
in the text document are eval uated to decide which parts of the text document are copied into the result document,
or to insert additional text. If no text document encoding is given, then UTF-8 encoding is assumed.

The statements (macro-like calls) that can be used in the text document are listed in the following table.

Statement Description

PVSCL: | FCOND(condition) |Open anew conditional text block. Thetext in the block isincluded in the result-
ing text output if the given condition evaluates to true. The opened conditional
text block has to be closed by a PvscL: ENDCOND call.

183

ps:pvscltext

Statement Description
PVSCL: ELSEI FCOND(This macro can be used after a PVSCL: | FCOND or PVSCL: ELSEI FCOND call. If the
condition) condition of the preceding PvSCL: | FCOND Or PVSCL: ELSEI FCONDisfailed, the con-

dition of this PvscL: ELSEI FCOND is checked. If it evaluates to true, the enclosed
text isincluded in the resulting text output.

PVSCL: ELSECOND This macro can be used after a PVSCL: | FCOND Or PVSCL: ELSEI FCOND call. If the
condition of the preceding PVSCL: | FCOND Or PVSCL: ELSEI FCONDis failed, the en-
closed text isincluded in the resulting text output.

PVSCL: ENDCOND Close a conditional text block. This macro is alowed after a PvSCL: | FCOND
PVSCL: ELSEI FCOND , Or PVSCL: ENDCOND call.

PVSCL: EVAL(expression) |Evaluate the given pvSCL expression and insert the value of the expression into
the result document.

These statements can occur everywhere in the text document and are directly matched, i.e. independently of the
surrounding text. The conditions of PVSCL: | FCOND and PVSCL: ELSEI FCOND and the expression of PVSCL: EVAL are
the same as the conditions described for source element type ps:pvsclxml (see Section 9.5.6, “ ps:pvsclxml ” for
details), except for alist of comma-separated flags that can follow the pySCL code. Following flags are supported.

Flag Description

LI NE Clear or remove the line containing the pvSCL conditional text statement.

Example for amulti-line if-statement utilizing flag LI NE :

/* PVSCL: | FCOND(Tenper at ur e, LI NE) */
initializeSensor("tenperature", PVSCL: EVAL(Tenper at ur e- >nax)) ;
/* PVSCL: ELSECOND */

di sabl eSensor ("t enperature");

/* PVSCL: ENDCOND */

Result if feature Temperature is selected:

‘ initializeSensor("tenperature", 60);

Example for asingle-line if-statement utilizing flag L1 NE :

‘//PVSCL: | FCOND(W ndSpeed, LI NE) updat eSensor (" wi nd") ; PVSCL: ENDCOND

Result if feature WindSpeed is selected:

‘ updat eSensor ("w nd") ;

BLANKS Clear theline containing the pvSCL conditional text statement. In contrast to the
flag LI NE does BLANKS replace each character with awhitespace. Thisensuresthe
location of the parts remaining in the file is the same as in the input document.

Example for amulti-line if-statement utilizing flag BLANKS :

/* PVSCL: | FCOND(Tenper at ur e, BLANKS) */
initializeSensor("tenperature", PVSCL: EVAL(Tenper at ur e- >max)) ;
/* PVSCL: ELSECOND */

di sabl eSensor ("t enperature");

/* PVSCL: ENDCOND */

Result if feature Temperature is selected:

/* */
initializeSensor("tenperature", 60);
/*

*/

184

ps:flagfile

Flag Description
Example for asingle-line if-statement utilizing flag BLANKS :

‘//PVSCL: | FCOND(W ndSpeed, BLANKS) updat eSensor ("wi nd") ; PVSCL: ENDCOND ‘

Result if feature WindSpeed is selected:

‘// updat eSensor ("w nd") ; ‘

Conditional text blocks can be nested. That means, that aPvscL: | FCOND block can contain another PVSCL: | FCOND
block defining a nested conditional text block that is evaluated only if the surrounding text block is included in
the resulting text output.

In the example document given below after processing with an ps:pvscltext transformation, the resulting text
document only contains an introductory chapter if the corresponding feature W t hi nt r oduct i on is selected.

Example 9.6. A sample conditional document
for use with the ps:pvscltext transfor mation

PVSCL: | FCOND(W t hl nt r oduct i on)

This text is in the resulting text output

if feature Wthlntroduction is sel ected.
PVSCL: ELSECOND

This text is in the resulting text output

if feature Wthlintroduction is not sel ected.
PVSCL: ENDCOND

This text is always in the resulting text output.

9.5.8. ps:flagfile

Attributes: dir [ps.directory]
file [ps:path]
type [psfiletype]
flag [ps:string]
encodi ng? [ps.encoding]

This source element typeisused to generate C/C++-Header files containing #def i ne <fl ag> <f | agval ue> state-
ments. The <f | agval ue> part of these statementsisthe value of the attribute val ue of the parent part element. The
name of the flag is specified by the attribute f | ag . See the section called “Providing Values for Part Elements”
for more details. The same file location can be used in more than one ps:flagfile definition to include multiple
#def i ne statementsin asinglefile.

Example 9.7. Generated code for a ps:flagfile for flag" DEFAULT" with value™ 1"

#i f ndef __guar d_DEBUG
#defi ne __ guar d_DEBUG
#undef DEBUG

#defi ne DEBUG 1
#endi f

9.5.9. ps:makefile

Attributes: dir [ps.directory]
file [ps:path]
type [ps:filetype]
variable [ps:string]
set? [ps:boolean]
makesysten? [ps:makesystemtype]
encodi ng? [ps:.encoding]

185

ps.classdiasfile

This source element type is used to generate makefile variablesusing a<var i abl e> += ' <var Val ue>' statement.
The <var val ue> part of the statement is the value of the attribute val ue of the parent part element. The name of
the variable is specified by the attribute vari abl e . See the section called “Providing Values for Part Elements’
for more details. The attribute set definesif the variable is set to the value (true) or if the variable is extended by
the value (false). The generated code is compatible with the gmake system. To generate code for a different make
system the attribute makesyst emcan be used. The same file location can be used for more than one ps: makefile
element to include multiple makefile variablesin asinglefile.

Example 9.8. Generated code for a ps.makefile for
variable" CXX_OPTFLAGS" with value"-06"

‘ CXX_OPTFLAGS += "- 06"

9.5.10. ps:classaliasfile

Attributes: dir [ps.directory]
file [ps:path]
type [ps:filetype]
alias [ps.string]
i ncl udebasedi r? [ps.directory]
encodi ng? [ps.encoding]

This source element typeis used to support different classes with different namesthat are concurrently used in the
same placeintheclasshierarchy. Thistransformation is C/C++ specific and can be used as an efficient replacement
for templatesin some cases. Thisdefinitionisonly used in conjunction with the part type ps.classalias. A t ypedef

classNane al i as; statement is generated by the standard transformation for this element type. cl assNane isthe
name of the class referenced by the parent ps.classalias part element. Furthermore, in the standard transformation
#i ncl ude directives are generated for each of the referenced class' ps:file source elementsthat have atype attribute
with the value 'def'. The optional attributei ncl udebasedi r defines how the #i ncl ude directives referencing the
class header files will be generated. If this attribute is missing or it has an empty value, the generated #i ncl ude
directives will reference the class header file by absolute file paths. Otherwise the value will be used as the base
directory path. In that case the generated #i ncl ude directives will reference the class header files by afile paths
relative to that base directory. If the alias name contains a namespace prefix, corresponding namespace blocks are
generated around thet ypedef statement.

Example 9.9. Generated code for a ps:classalias for
alias"io::net::PCConn" with aliased class" NoConn"

#i fndef __PCConn_i ncl ude__

#define __ PCConn_i ncl ude__

#i nclude "C:/Wather Station Exanpl e/ out put/usr/wm src/NoConn. h"
namespace io {

namespace net {

typedef NoConn PCConn;

}

}
#endi f _ PCConn_i ncl ude__

Example 9.10. Generated code for a ps.classaliasfor alias"io::net::PCConn"
with aliased class" NoConn" with includebasedir set to " usr/wm-src”

#i fndef __ PCConn_i ncl ude__
#define _ PCConn_i ncl ude__
#i ncl ude "NoConn. h"
nanespace i o {

nanespace net {

typedef NoConn PCConn;

}
#endi f _ PCConn_i ncl ude___

186

ps:symlink

9.5.11. ps:symlink

Attributes: dir [ps.directory]
file [ps:path]
type [ps:filetype]
l'inktarget [ps:string]

This source element type is used to create asymbolic link to afile or directory named <l i nkt ar get > .

Note

Symboalic links are not supported under Microsoft Windows operating systems. Instead files and direc-
tories are copied.

9.6. Predefined Part Element Types
Table 9.8. Predefined part types

Part type Description Icon
ps:class Maps directly to a class in an object-oriented programming language. G
ps.classalias | Different classes may be mapped to asingle class name. Value restrictions must ensure|
that in every possible configuration only one classis assigned to the alias.
ps: object Maps directly to an object in an object-oriented programming language. ®
ps.variable |Describes a configuration variable name, usually evaluated in make files. The variable| @
can have a value assigned.
ps:.flag A synonym for ps:variable . This part type maps to a source code flag . A flag can| @
be undefined or can have an associated value that is calculated at configuration time.
ps:flag is usually used in conjunction with the flagfile source element, which generates
a C++-preprocessor #def i ne <f | agNane> <f | agVal ue> statement in the specified file.
ps:project | ps:project can be used asthe part type for anything that does not fit into other part types.| &
ps: aspect Maps directly to an aspect in an aspect-oriented language (e.g. Aspect] or AspectC++).|
ps.feature | Mapsdirectly to afeaturein a Feature Model. (F)
ps:value General abstraction of avalue. @
ps:method |Mapsdirectly to amethod of aclassin an object-oriented programming language. &
ps:function | Describes the declaration of afunction. o
ps: functionimpl | Describes the implementation of afunction. bl
ps.operator | Mapsdirectly to a programming language operator or operator function. &
ps:link General abstraction for alink. This could be for instance awww link or file systemlink.| g

The following sections provide detailed descriptions of the family model part element types that are relevant for
the standard transformation (see Section 6.3.2, “ Standard Transformation”).

9.6.1. ps:classalias

Attributes: class [ps.class|
Val ue [ps:string]

A class dlias is an abstract place holder for variant specific type instantiations. It allows to use concepts similar
to interface inheritance with virtual methods in C++ without any overhead. The corresponding source element

187

ps.class

ps: cl assal i asfil e can be used to generate the required C++ code. The class or class alias to be aliased can be
either referenced by the attribute cl ass or the attribute val ue.

Using attribute cl ass the class or class dias element is directly referenced. The referenced element has to be of
part typeps: cl ass Of ps: cl assal i as. Alternatively, using the attribute val ue the class or class alias element can
be referenced by its unique name.

For more information and an example see Section 9.5.10, “ ps.classaliasfile” .

9.6.2. ps:class
Attributes: cl assname? [ps:string]
A class represents a class in the architecture. It can be used in conjunction with ps: cl assal i as .

The value of the optional attribute cl assnane represents the fully qualified name of the class (e.g. st d: : stri ng)
to be used when generating code using the standard transformation. Otherwise the unique name of the element
isused for this purpose.

For more information and an example on using ps: cl ass together with ps: cl assal i as see Section 9.5.10, “
ps.classdiasfile” .

9.6.3. ps:flag

Attributes: Val ue [ps:string]

A flag represents any kind of named value, e.g. a C/C++ preprocessor constant. For the standard transformation
the value of attribute val ue is evaluated by ps: f1 agfi | e resp. ps: makefi | e source elements to generate C/C++
specific preprocessor definitions resp. make file variables.

For moreinformation about theps: | agfi | e and ps: makef i | e Source element typessee Section 9.5.8, “ ps:flagfile
" and Section 9.5.9, “ ps:makefile” .

9.6.4. ps:variable
Attributes: Val ue [ps:string]

A variablerepresentsany kind of named value, e.g. amakefile or programming language variable. For the standard
transformation the value of attribute val ue is evaluated by ps: fl agfil e resp. ps: makef i | e source elements to
generate C/C++ specific preprocessor definitions resp. make file variables.

For moreinformation about theps: | agfi | e and ps: makef i | e source element typessee Section 9.5.8, “ ps:flagfile
" and Section 9.5.9, “ ps:makefile” .

9.6.5. ps:feature
Attributes: fid [ps.feature]

This specia part type is used to define features which have to be present if the part element is selected. If
pure::variants detects a selected part of type ps: feat ure , the current feature selection must contain the feature
with the id given as value of the attribute fi d . Otherwise the result is not considered to be valid. The selection
problem Auto Resolver (if activated) triesto satisfy feature sel ections expected by ps: f eat ur e part elements. This
functionality does not depend on the use of any specific transformation modules.

9.7. Expression Language pvSCL

The pure::variants expression language pvSCL is a simple language to express constraints, restrictions and cal cu-
lations. It provides|ogical and relational operatorsto build simple but also complex Boolean expressions.

The language is based on a simple object model. An object has an identity, attributes (data) and functions which
can be applied to it. Some functions can be used without an explicit object context. Objects represent either simple

188

How to read this reference

dataitems such as numbers, or collections of objects; or in many cases they represent pure::variants model items
such as elements or models.

Both full and partial configuration mode is fully supported when evaluating pvSCL expressions. See also Sec-
tion 5.8.2, “ Partial Evaluation ” for details about model evaluation in these modes. In partial evaluation, calcu-
lations are done also with a special open value. So, the result of a constraint, restriction, or calculation can be
also open.

9.7.1. How to read this reference

The reference use the term context to denote the object to which an operator or function is applied to. Thistermis
not to be confused with the keywords cont ext / CONTEXT, which deliver a special object, see details below.

9.7.2. Comments

Expressions can be commented. A comment is started with a slash immediately followed by a star. The comment
itself can span multiplelines. It is ended with a star immediately followed by a slash. Comments are ignored when
an expression is evaluated.

Syntax

/* coment text */

Examples |A /* The first character in the al phabet. */ OR
Z |* The last character in the al phabet.*/

9.7.3. Boolean Values

Expressions can resolve to aboolean value, i.e. TRUE or FALSE. An expressionissaid to fail if its boolean value
is FALSE, and to succeed otherwise. Boolean values have type ps: boolean.

Syntax TRUE
FALSE

Examples ‘NOT(TRUE = FALSE)

9.7.4. Numbers

Numbers can either be decimal and hexadecimal integers, or floating point numbers. Hexadecimal integers are
introduced by Ox or 0X followed by digits and / or characters between a and f. Floating point numbers contain a
decimal point and / or positive or negative exponent.

Integers have type ps.integer, and floating point numbers have type ps:float.

Examples 100
10e2
150e- 3
OxFFO0
1.5

5. 5E+3

9.7.5. Strings

Strings are sequences of characters and escape sequences enclosed in single quotation marks. The alowed char-
acters are those of the Unicode character set. Strings have type ps:string.

Following escape sequences are supported.

Escape Sequence Meaning

\n New line

189

Collections

Escape Sequence Meaning

\t Horizontal tabulator
\b Backspace
\r Carriage return
\f Form feed
\ Single quotation mark
\" Quotation mark
\ Backdash

\0-\777 Octal character code

\uO0OO - \uffff

Unicode character code

Strings can be concatenated with other strings and numbers using the plus operator. The result is a new string
containing the source strings and numbers in the order they were concatenated.

Syntax ‘ characters including escape sequences'
Examples | Hel | o

'10\44' = '10%'

' 10\ u20AC = '10€'

‘Line ' + 1 +'\n" + 'Line "' + 2

9.7.6. Collections

Collectionsarelistsor setsof valuesof the sametype. Lists may contain oneand the same val uetwice, whereas sets
only contain unique values. The type of lists either isps:list or the value type followed by [], e.g. ps:string[] for a
list of strings. Thetype of setseither isps.set or thevaluetypefollowed by {}, e.g. ps:integer{} for aset of integers.

Coallectionliteralshavelist type. Their itemsare constructed from the values of any expressions, particularly nested
collections, and must have the same type.

In partial evaluation, if the result of a calculation is a collection with at least one open member, instead of this
incomplete collection only the open value will be returned.

Syntax ‘{ expr, expr, ... }
Examples {"spring', 'summer', 'autumm', 'winter'}
{1, 2, 3}

9.7.7. SELF and CONTEXT

The keywords SELF and CONTEXT are context dependent name references. The type of SELF and CONTEXT is
ps:model if amodel isreferenced, ps.element for an element, ps.relation for arelation, ps:attributefor an attribute,

and ps:constant for an attribute value.

Model Object

SELF

CONTEXT

Constraint

Element containing the constraint

Model containing the constraint

Restriction on element

Element containing the restriction

Element containing the restriction

Restriction on relation

Relation containing the restriction

Element containing the relation

Restriction on attribute

Attribute containing the restriction

Element containing the attribute

Restriction on attribute value

Attribute value containing the re-
striction

Element containing the attribute val-
ue

Attribute value calculation

Attribute value being cal cul ated

Element containing the attribute val-
ue

190

Name and ID References

Syntax SELF

CONTEXT

Examples | sgLF AND SELF->value = 5

CONTEXT | MPLI ES SELF <> 0

9.7.8. Name and ID References

Models, elements, and attributes can be referenced by their unique identifiers. Models can aso be referenced
by their names, and elements by their unique names, optionally prefixed by the name of the model containing
the element. For a referenced model the result type is ps:model, for an element ps:element, and for an attribute
ps:attribute.

Elements can be referenced across linked variants, i.e. variant collections, instances, and references, by means of
apath name. Path names navigate to elementsin another variant along the variant elementsin avariant hierarchy.

Variant elements are elements with type ps:variant representing the root element of alinked variant.

Path Name Element Description
variant-name:name Relative path name
‘name Absolute path name
parent:name Parent variant navigation
variant-collection-or-instance-name[3] :name Anonymous variant navigation for variant collections
and instances

A nameisresolved as follows.

1

If name or model-name equals "context”, "CONTEXT", "self", or "SELF"
* resolves to the context dependent name reference CONTEXT or SELF
If name isthe name of avisiblelocal variable, iterator or accumulator

* resolvesto thelocal variable, iterator or accumulator

If name is the unique name of an element

* resolvesto the element

If element-name is the unique name of an element in model model-name
* resolvesto the element

If name is the name of a model

* resolvesto the model

If it is an absolute path-name

* resolve name without the leading : to an element or model

If it is a path-name with parent variant navigation

« resolve name in the context of the parent variant of the current variant to an element
If it is a path-name with anonymous variant navigation

* resolve name in the context of the specified variant to an element

Otherwiseit is arelative name

191

Element Selection State Check

* resolve asfull qualified name to an element or model

Syntax

Examples

@d

nane

nmodel - nane. el enent - nane
pat h- nanme

@ sdkd

Fr ont door

Door s. Backdoor

Resi dence: Front door : Col or->val ue = 'white'

Doubl eLock | MPLI ES parent: par ent : Manson

House. Door s[1] AND House. Door s[1] : Type- >nunber = '113a’

9.7.9. Element Selection State Check

Elements can be referenced independently of their selection, i.e. existence, in the current variant.

To check the selection state of a given element, the meta-attribute pv: Selected can be called on that element.

Depending on the configuration mode and selection state following values will be returned:

Selection state Full evaluation Partial evaluation
Selected TRUE TRUE
Excluded FALSE FALSE
Unselected FALSE open

Applying Boolean operations on element references enforce an implicit conversion to the Boolean selection state.
So an explicit call of pv: Selected on element references is not necessary in following use cases:

A constraint or restriction with asingle element reference or asingle expression resulting in an element reference

+ Condition of aconditional

» Operand of operator NOT

* Left and right operand of operator XoR

« Left operand of operators AND and OR

» Right operand of operators aND and OR if |eft operand resolves to FALSE
» Left and right operand of operator EQUALS

+ Left operand of operators | MPLI ES, REQUI RES, RECOMVENDS, CONFLI CTS and DI SCOURAGES

* Right operand of operators | MPLI ES, REQUI RES, RECOMVENDS, CONFLI CTS and DI SCOURAGES if left operand re-

solves to FALSE

Examples |l ack OR White
IF Wnter THEN Snow >pv: Sel ect ed ELSE Sunshi ne->pv: Sel ect ed ENDI F
Di esel RECOMMENDS Particl eFilter

NOT(Hi gh) | MPLI ES Low

9.7.10. Attribute Access

Attributes and meta-attributes can be accessed using the call operator - >. The left operand of the call operator is
the context of the call, the right operand the attribute or meta-attribute to call. It isan error if there is no attribute

or meta-attribute with the given name for the context of acall.

192

Logical Combinations

If the context has model or element type, ordinary model and element attributes can be accessed. The result type
is psattribute.

The value of an attribute is automatically accessed in all contexts a value is required, e.g. operand of alogical,
relational, arithmetic, or comparison operator. Meta-attribute pv: Get can be used to access an attribute value ex-
plicitly. For an attribute with collection type a specific value can be accessed by specifying the index of the value
as argument to the call (function call syntax).

Infull configuration mode, an error iscreated, if the accessed attribute has no value. In partial configuration mode,
instead an open valueis returned.

The context types meta-attributes can be called on, depend on the implementation of a meta-attribute. Meta-at-
tributes may accept an argument list (function call syntax). The result of calling a meta-attribute also depends on
its implementation.

Since meta-attributes (built-in and user-defined) and attributes use the same calling syntax, the calling precedence
of meta-attribute and attribute calls needs to be considered:

» The built-in meta-attributes (see Section 9.7.23, “Function Library”) will override all attribute calls with the
same name. However, it is generally not recommended to name attributes as same as built-in meta-attributes.

* A user-defined function in the meta-attribute syntax (see Section 9.7.17, “ Function Definitions”) will override
attribute calls with the same name and the same number of arguments counted in the meta-attribute syntax.
That is, a user-defined function with one argument (in the corresponding meta-attribute syntax called with
zero arguments) will override an attribute call without arguments. Analogous, a user-defined function with two
arguments (in the meta-attribute syntax called with one argument) will override an attribute call with index
argument.

To access such hidden attributes, the meta-attribute pv: Attribute has to be used instead.

Syntax cont ext - expr -
cont ext - expr -
cont ext - expr -
cont ext - expr -

attr-nanme

attr-name(i ndex-expr)
neta-attr- name

net a-attr-name(expr, expr, ...)

V V V V

Examples pr oduct - >version > 3

seasons->nanes = { 'spring', 'summer', 'autum', 'winter' }
seasons- >nanes(1) = 'summer' AND seasons->nanes(2) = 'autumm'
seasons- >nanes->pv: Si ze = 4

seasons- >nanes- >pv: Get (3) = 'winter'

9.7.11. Logical Combinations

Expressions can be logically combined. For this purpose the expressions are evaluated to their boolean values. It
is an error if this conversion is not possible. The logical operator is then applied to the boolean values resulting
in TRUE or FALSE.

In partial evaluation, logical operations are applied using three-valued logic. So, Boolean open values are sup-
ported as operands. The result can then be also open.

Following logical operators are supported:

Operator Meaning
AND Binary operator that yields TRUE if both operands are
TRUE.
OR Binary operator that yields TRUE if at |east one operand

is TRUE. If the first operand is TRUE then the second
operand will not be evaluated.

XOR Binary operator that yields TRUE if exactly one operand
is TRUE.

193

Relations

Operator Meaning

NOT Unary operator that yields TRUE if the operand is
FALSE.

Logical operators have a lower precedence than comparison operators but a higher precedence than relational
operators.

Syntax expr AND expr
expr OR expr
expr XOR expr
NOT(expr)

Examples | pe orR NOT(be)
cabri ol et XOR sunr oof

9.7.12. Relations

Expressions can be set in relation to each other. For this purpose the expressions are evaluated to their boolean
values. It isan error if this conversionis not possible. Therelational operator isthen applied to the boolean values
resulting in TRUE or FALSE.

In partial evaluation, relation operations are applied using three-valued logic. So, Boolean open values are sup-
ported as operands. The result can then be also open.

Following relational operators are supported:

Operator Meaning

REQUIRES Evaluates to TRUE, iff @ both operands evaluate to
TRUE or b) theleft operand evaluatesto FALSE. Inthe
latter case, the right operand will not be evaluated.

IMPLIES Same as REQUIRES.

CONFLICTS Evaluates to TRUE, iff a) the left operand evaluates to
TRUE and the right operand evaluates to FALSE or b)
the left operand evaluates to FALSE. In the latter case,
the right operand will not be evaluated.

RECOMMENDS Like REQUIRES but always yields TRUE.
DISCOURAGES Like CONFLICTS but always yields TRUE.
EQUALS Evaluatesto TRUE, iff either both operands evaluate to

TRUE or both operands evaluate to FALSE.

Relational operators have alower precedence than conditionals, and logical and arithmetic operators.

Syntax expr | MPLI ES expr
expr REQUI RES expr
expr CONFLI CTS expr
expr RECOMVENDS expr
expr DI SCOURAGES expr
expr EQUALS expr

Examples car REQUI RES wheel s
| egs->nunber = 4 CONFLI CTS hunan

9.7.13. Conditionals

Conditionals allow to evaluate alternative expressions depending on the boolean value of a condition. If boolean-
condition-expr evaluatesto TRUE, expression consequence-expr is evaluated to determine the result of the condi-
tional expression. If the condition evaluates to FAL SE, expression alternative-expr is evaluated instead. In partial

194

Value Comparison

evaluation, if the condition isopen, both consequence-expr and alter native-expr are evaluated. If both result values
are equal, that equal value with be the result of the conditional. Otherwise the result is an open value. Itisan error
if boolean-condition-expr cannot be evaluated to a Boolean value.

Conditionals can occur everywhere where expressions are allowed. This meansin particular that conditionals can
be nested. Conditionals have a higher precedence than relational, logical, arithmetic and compare operators.

Syntax ‘ I F condition-expr THEN consequence-expr ELSE al ternative-expr ENDIF
Examples || F summer THEN
weat her - >t enperature >= 25
ELSE

IF winter THEN
weat her- >t enperature <= 5
ELSE
weat her- >t enperature > 5 AND weat her->tenperature < 25
ENDI F
ENDI F

9.7.14. Value Comparison

Expressions can be compared based on their values. For this purpose the expressions are evaluated to their values
first, and then the comparison operator is applied to the values resulting in TRUE or FALSE. In partial evaluation,
if oneif the operandsis open, the result of the comparison will be also open.

Beginning with pure::variants 5.0.0, in genera values of different base types are not comparable. A comparison
of such value combinations will create an error. Exceptions are a) the number types (ps:float and ps:integer are
comparable) and b) versions (type ps:version), which also can be compared with strings (type ps:string).

Two numbers are compared based on their numeric values, two strings lexically, two collections item by item,
two booleans by their boolean values, and model and element references by their ID.

Following comparison operators are supported:

Operator Meaning

= Yields TRUE if both operands have the same value.

<> Yields TRUE if the operands have different values.

> Yields TRUE if the left operand's value is greater than
the right operand's val ue.

< Yields TRUE if the left operand's value is less than the
right operand's value.

>= Yields TRUE if the left operand's value is greater than
or equals the right operand's value.

<= Yields TRUE if the left operand's value is less than or
equals the right operand's value.

The types ps:boolean, ps:element, and ps:model do not have a natural order. Thus, beginning with pure::variants
5.0.0 any order comparison of such values will create an error.

Comparison operators have a lower precedence than arithmetic operators but a higher precedence than logical
operators.

Syntax | expr = expr
expr <> expr
expr > expr
expr < expr
expr >= expr
expr <= expr

195

Arithmetics

9.7.15. Arithmetics

Numbers can be negated, added, subtracted, multiplied, and divided. If at least one operand of an arithmetic
operation has floating point type, the result also will have floating point type. Division by zero and floating point
overflows create errors.

In partial evaluation, if one of the operandsis open, the result will usually aso be open. Exceptions are: Multipli-
cation of open by zero and division of zero by open results both in zero.

Arithmetic operators have a higher precedence than comparison operators and alower precedence than condition-
als. Addition and subtraction have alower precedence than multiplication and division. That means, 2*3+3*2 is
calculated as (2* 3)+(3*2)=6 instead of ((2* 3)+3)*2=18.

Syntax expr + expr
expr - expr
expr * expr
expr [expr
- expr

Examples |5 x5+ 2% 5% 6+6* 6 =121
-(8 * 10) + (10 * 8) =0
-OxFF / 5 = -51

-5->pv: Abs() = -5

(-5)->pv: Abs() =5

9.7.16. Variable Declarations

The LET keyword declares at | east one variable with name var-name and initializesit with the value of expression
init-expr. The variable is visible only in the expression following keyword IN, and in the init-expr of subsegquent
variable declarators.

Variable declarations can occur everywhere expressions are allowed. To avoid name conflictsit is recommended
to use own namespaces for the variable names (e.g. my:var-name instead of var-name).

The result of avariable declaration is the value of the expression following keyword IN.

Syntax ‘LEF var-name = init-expr, var-name = init-expr, ... |IN expr

Examples LET
doors = car->front Doors + car->rear Doors,
cabrio = (doors = 2),
|'i mousi ne = (doors = 4)
I N
cabrio OR |i nousi ne

9.7.17. Function Definitions

The DEF keyword defines afunction with name fct-name and the given parameter list (see syntax below). Multiple
functions with the same name can be defined, if they have different numbers of parameters. Defining multiple
functions with the same name and same number of arguments are not allowed (one-definition rule (ODR)). Using
the same function name as for built-in functions is also not allowed. The parameters of the definition are only
accessible in the function body (fct-body-expr). The result of calling such afunction is the value of the fct-body-
expr calculated for the given argument list.

Since pure;:variants 5.0.0, such functions can also be called using meta-attribute syntax if they have at least one
parameter. Inthis case, the context on which the functionis called is assigned to the first parameter of the function.
The arguments of the function call are assigned to the remaining parameters of the function.

Function definitions are only allowed at the beginning of a pvSCL expression. pvSCL expressions which contain
only function definitions evaluate to TRUE. To avoid name conflicts, it is recommended to use own name spaces

196

Function Calls

for thefunction and parameter names (e.g. my:fct-nameinstead of fct-name, and my: param-nameinstead of param-
name). To avoid future name conflictsit is recommended not to use the pv name space for function names.

If not defined in apvSCL code library, such afunction is visible only in the constraint, restriction or calculation
containing the function definition.

Syntax DEF fct-name(par am nane, param nane, ...) = fct-body-expr ;
DEF fct-nane(param nane, param nane, ...) = fct-body-expr ;
expr

Examples | DEF plus(x,y) = x + y;

pl us(plus(plus(1,2),3),4) = 10 // function syntax

AND

1->pl us(2)->plus(3)->plus(4) = 10 // neta-attribute syntax

9.7.18. Function Calls

A function call executes the built-in or user-defined function fct-name with the given argument list and returnsthe
value calculated by the function. It isan error if the function does not exist.

Since pure::variants 5.0.0, functions can also be called using meta-attribute syntax if they have at |east one param-
eter. In this case, the context on which the function is called is assigned to the first parameter of the function. The
arguments of the function call are assigned to the remaining parameters of the function.

Syntax fct-name(exprl, expr2, ...) // function syntax
is equivalent to

exprl->fct-name(expr2, ...) // nmeta-attribute syntax

Examples aver age(accounts, ' i ncone') > average(accounts,'outgoings') // function syntax
account s- >average(' i ncone') > accounts->average('outgoings') // nmeta-attribute
synt ax

9.7.19. Iterators

Iterators are specia functions able to iterate collections. For each collection item expression expr is evaluated.
The current collection item is accessible in the expression using iterator variable iter-name, which isvisible there
only. The value of an iterator function call depends on the implementation of that function.

Syntax ‘fct—name(iter—name | expr)

Examples | account s- >pv: Chil dren() - >
pv: For Al | (account | account->bal anced = TRUE)

9.7.20. Accumulators

Accumulatorsare special functionsableto iterate collections. For each collection item expression expr iseval uated
and itsvalueis assigned to the accumulator variable acc-name. Theinitia value of accumulator variable acc-name
is the value of expression acc-init-expr. The current collection item is accessible in the expression using iterator
variableiter-name. Both variables, iter-name and acc-name, are visible in expression expr only.

The value of an accumulator function call is the final value of the accumulator variable.

Syntax ‘fct-narre(iter-narre; acc-name = acc-init-expr | expr)

Examples | accounts- >pv: Chil dren() - >

pv:lterate(account; sum= 0 | sum + account->deposit) > 0

197

Error Handling

9.7.21. Error Handling

During evaluation of pvSCL expressions, using wrong syntax, wrong input types or invalid values will create
evaluation errors and the evaluation of that expression is canceled. In partial evaluation, the usage of open values
can hide such errors. An example is getting an item of a collection by using function pv:Item(n), when nis open.
If n evaluates to a concrete number in future configurations, the function will return either the nth item or cancels
with an index-out-of-range error. Since it cannot be known beforehand, the partial evaluation returns not only
open, but also sets a potential-error flag for the evaluation of that pvSCL expression. Even if the evaluation of the
complete expression results in a constant value, likein

col I ection->pv:|ten Feature->openattr) = 2 OR Sel ect edFeature

which will return either TRUE or create an error, the partial evaluation will alwaysreturn open if that potential-er-
ror flag is set.

Errors, warnings, and information markers can a so be created using functions pv:Fail, pv:Warn, and pv:Inform,
respectively. Usualy they are applied in expressions like

condition OR pv: Fail (‘Error: Condition is not fulfilled.")

Soif condition evaluatesto FAL SE, theright operand of OR, pv:Fail, isexecuted and an error marker is created. If
the condition evaluatesto TRUE, the shortcut appliesand pv: Fail isnot executed. However, if in partial evaluation
condition evaluatesto open, theright operand of OR also needsto be executed. So the execution of pv: Fail actually
needs to create an error marker, although it is not clear, if the condition is fulfilled or not. To avoid this, operand
expressions, which needsto be only executed because a shortcut could not be applied because of an open operand,
will be executed in a special mode, where pv:Fail, pv:Warn, and pv: Informwill not create any markers.

9.7.22. Limitations

Depth of syntax tree

The depth of the syntax tree of the parsed pvSCL expression is limited to 512 levels by default. If a pySCL
expression exceeds this limit, a parsing error will be created and the expression will not be processed further.

An example for pvSCL expressions, which could raise this limit, are sequences of operations of a large number
of operands without parentheses like

Feature_1 OR Feature_2 OR ... OR Feature_520

Usually grouping the operations by parentheseswill reduce the number of syntax treelevels of these kind of pvSCL
expressions. Another example are deep nested expressions like

| F Feature_1 THEN ..
ELSE | F Feature_2 THEN ..

ELSE | F Feature_520 THEN ..
ELSE ..
ENDIF ... ENDIF

The default limit can be overridden by setting the environment variable PV_PVSCL_MAX_AST_LEVELStoa
numeric value greater than zero, interpreted as the new number of maximum levels. The value of this variable
will be considered by the pure::variants Desktop Client, the pure::variants Web Client and all pure::variants in-
tegrations. It will also be considered by the pure::variants Model Server, if the variable is set during the launch
of the server process.

Note

Increasing the limit above the default limit can lead to stack overflows and crashes of the pure::variants
Desktop Client, the pure::variants Web Client, the pure::variantsintegrations, and the pure::variants M od-
el Server. So the changing of the limit should only be done if it is realy needed and is subject to the
user's own risk.

198

Function Library

Depth of recursive operation calls

The depth of recursive operation calls of an executed pvSCL expression is limited to 512 operations by default.
Usually, pvSCL expressions with recursive function calls can exceed this limit. Example:

DEF sum(x) = IF x = 0 THEN O ELSE sun(x-1) + x ENDIF;
sum(1000)

In that example, the execution will be canceled and the error “pvSCL call depth limit of limit operations reached.
It may be an endless recursion.” will be created.

In partial evaluation, the limit can also be reached because of an endless recursion created by an open termination
condition. Example:

DEF sunm(x) = IF x = 0 THEN O ELSE sun(x-1) + x ENDIF;
sun(Feat ur e- >openAttr)

Because of the open condition x = 0, this results in an endless recursion of calls of the function sum with open
argument x. If the operation depth limit is reached, the recursion is canceled and the result of the function will
be an open value.

The default limit can be overridden by setting the environment variable or Java system property
PV_PVSCL_MAX_OP_CALL_DEPTH to a humeric value greater than zero, interpreted as the new number of
maximum operations. The value of this variable will be considered by the pure::variants Desktop Client, the
pure::variants Web Client and al pure::variants integrations.

Note

Increasing the limit above the default limit can lead to stack overflows and crashes of the pure::variants
Desktop Client, the pure::variants Web Client and all pure::variants integrations. This can be prevented
by also increasing the thread stack size of the Java VM (e.g. by setting the VM argument -Xss). The
changing of the limit should only be doneif it isreally needed and is subject to the user's own risk.

9.7.23. Function Library

In partial evaluation all functions can process open values as context and as each of their arguments. Depending
on the functionality the return value can be also open.

pv:Abs()

Get the absolute value of the context which must be a number.

Examples 10->pv: Abs() = 10
(-10)->pv: Abs() = 10
(-2.5)->pv: Abs() = 2.5

pv:Acos()

Return the trigonometric arc cosine of the context number. The result value has type ps:float. This function must
only be called on numbers between -1 and 1.

Examples | o->pv: Acos() = 1.5707963267948966
0. 2->pv: Acos() = 1.369438406004566
1->pv: Acos() = 0.0

(-1)->pv: Acos() = 3.141592653589793

pv:AllChildren()

Deprecated. Get al children of the context which must be either a model, element, or attribute. Fails otherwise.
All children of amodel are the elements of the model, of an element are the elements of the sub-tree with this
element asroot (excluding this element), and of an attribute its attribute values.

199

Function Library

This function is deprecated since pure::variants version 5.0.0. Please use functions pv: SubTree and pv:Children
instead.

Examples | nodel - >pv: SubTree() - >pv: Size() > 0
el enent - >pv: SubTr ee(f al se) - >pv: Col | ect (e| e->pv: Nane())
attribute->pv: Children()->pv: Col | ect (val ue| val ue->pv: Get ())

pv:Append(expr)

Append the value of expr to the context which must be a collection. It is an error if the type of the value is not
compatible to the item type of the collection. If the context collection is a set, then the item only is appended if
not already contained in the set.

Examples {}->pv: Append(1) = {1}
{1,2,3}->pv: Append(2) = {1,2,3,2}
{1,

2,3} ->pv: AsSet () - >pv: Append(2) = {1, 2, 3}->pv: AsSet ()

pv:AppendAll(collection)

Append all elements of the argument collection to the context collection. Itisan error if the types of both collection
don't match. If the context collection is a set, then only items from the argument collection are appended if not
already contained in the set.

Examples | {}->pv: AppendAl I ({1,2,3}) = {1,2,3}
{1,2,3}->pv: AppendAl | ({1,3,5}) = {1,2,3,1,3,5}
{1, 2,3}->pv: AsSet () - >pv: AppendAl | ({1, 3,5}) = {1, 2, 3,5}->pv: AsSet ()
pv:Asin()

Return the trigonometric arc sine of the context number. The result value has type ps:float. This function must
only be called on numbers between -1 and 1.

Examples | o->pv:Asin() = 0

0.2->pv: Asin() = 0.2013579207903308
1->pv: Asin() = 1.5707963267948966
(-1)->pv: Asin() = -1.5707963267948966

pv:AsList()

Convert the context to alist. It isan error if the context does not have collection type.

Examples ‘{1, 1,2, 3}->pv: AsList() = {1,1,2, 3}

pv:AsSet()

Convert the context to a set. It isan error if the context does not have collection type. If the context has list type,
all duplicate items of thelist are removed.

Examples ‘{1, 1,2,3}->pv: AsSet () = {1, 2,3}

pv:Atan()

Return the trigonometric arc tangent of the context number. The result value has type ps:float.

Examples 0->pv: Atan() = 0

0.2->pv: Atan() = 0.19739555984988078
100- >pv: Atan() = 1.5607966601082315
(-100) - >pv: Atan() = - 1. 5607966601082315

pv:Attribute(name)

200

Function Library

Get the attribute with the given non-empty name. Calling this function with an empty name creates an error. Fails
if the context does neither have model nor element type, or no attribute with the name exists.

Examples ‘sel f->pv: Attribute(' speed') = 100

pv:Attributes(), pv:Attributes('type’)

Get dl attributes of the context, optionally with the non-empty (exact) type. Calling this function with an empty
type creates an error. Failsif the context does neither have model nor element type, or if no attribute (with given
type) exists.

Examples ‘sel f->pv: Attributes(' ps:integer')

pv:Characters()

Get the characters of the context string as list.

Examples “Text‘—>pv:Characters() ={T,'e,'x,"t'}

pv:Child(index)

Get the child of the context with the given index. Failsif the context does neither have model, element, nor attribute
type, or the index is invalid. The child of a modd is an element, of an element an element, and of an attribute
an attribute value.

Examples ‘ sel f->pv: Chi | d(0) - >pv: Sel ect ed()

pv:Children()

Get the direct children of the context which must be either a model, element, or attribute. Fails otherwise. The
children of amodel isalist containing the root element of the model, of an element its child elements, and of an
attribute its attribute values.

Examples al ternatives->pv: Chi | dren()->pv: Si ze() >
al ternati ves->pv: Sel ect edChi | dren() - >pv: Si ze()

pv:ChildrenByState(state), pv:ChildrenByState(state,selector)

Deprecated. Get al children of the context element with the given non-empty selection state and optionally the
given non-empty selector, as ps.element[]. Calling this function with an empty selection state or selector creates
an error. Failsif the context does not have element type.

Thisfunction is deprecated since pure::variants version 5.0.0. Please use function pv: Children() instead.

Examples el ement - >pv: Chi | dren- >pv: Sel ect (e| e- >pv: Sel ecti onSt at e() =' ps: excl uded')
el ement - >pv: Chi | dren- >pv: Sel ect (e| e- >pv: Sel ecti onSt at e() =' ps: excl uded' and
e->pv: Sel ector () =" ps: user')

pv:Class()

Get the class of the context, as ps: string, which must be a configuration space, model, element, relation, attribute,
or attribute value. Fails otherwise. The class of a configuration space is ps:configspace, of amodel ps:model, of
an element the element class, of arelation the relation class, of an attribute ps:attribute, and of an attribute value
the type of the attribute value.

Examples ‘cont ext->pv: Cl ass() = 'ps: nodel’

201

Function Library

‘ I MPLI ES sel f->pv: d ass() = 'ps:el enent’

pv:Collect(iterator)

Iterate the context collection and evaluate the iterator expression for each element of the collection. Return anew
collection with all the evaluation results. The return typeis ps.list.

Examples pr oduct s->pv: Chi l dren()->
pv: Col lect(p | | F p->stocked THEN 1 ELSE 0 ENDI F) - >
pv: Sun{) > 50

pv:Contains(expr)

Check whether the evaluation result of expression expr is contained in the context, which must be a collection.

Examples ‘{1, 2, 3}->pv: Contai ns(3) = true

pv:ContainsAll(collection)

Check whether each value of collection is contained in the context, which must be a collection.

Examples ‘{1, 2,3}->pv: Contai nsAll ({1,2}) = true

pv:Cos()

Return the trigonometric cosine of the context number. The result value has type ps:float.

Examples | o->pv: cos() =
0.2->pv: Cos() = 0.9800665778412416
100- >pv: Cos() 0. 8623188722876839
(-100) - >pv: Cos() = 0.8623188722876839

In i e

pv:Date()

Returnsthe date of the given date time value. If the date time istimezoned, the datein GMT time zoneis returned.
Theresult typeis ps:date. If the given date time value is timezoned, the resulting date is al so timezoned.

Examples pv: Eval uat i onDat eTi me() - >pv: Dat e() - >pv: ToSt ri ng()
' 2020- 02- 28T10: 24: 42' - >pv: ToDat eTi me() - >pv: Dat e() - >pv: ToString() = '2020-02- 28’
' 2020- 02- 28T10: 24: 42+01: 00' - >pv: ToDat eTi me() - >pv: Dat e() - >pv: ToString() =
' 2020- 02- 287"

pv:DefaultSelected()

Check if the context element is selected by default. Fails if the context does not have element type.

Examples ‘ radi o- >pv: Def aul t Sel ected() AND speakers->nunber = 2

pv:Element(hame-or-id)

Get the element with the given non-empty unique name or identifier. Calling the function with an empty unique
name or identifier creates an error. If called on a model, only elements in that model will be considered. It isan
error if the element does not exist or the function is called on anything else than a model.

Examples ‘ Model - >pv: El ement (' wi nter')->pv: Sel ected() = true

pv:EvaluationDateTime()

Returns the date and time when the current evaluation has started. The result type is ps: datetime.

202

Function Library

Examples ‘ pv: Eval uat i onDat eTi me() - >pv: ToSt ri ng()

pv:EvaluationisPartial()

Returnstrue if the current evaluation is executed in partial configuration mode. Returns false if the current eval-

uation is executed in full configuration mode. The result typeis ps: boolean.

Examples ‘IF pv: Eval uationl sPartial () THEN 'fixed' ELSE 'open' ENDIF

pv:ExclusionHint(message,element),
pv:SelectionHint(message,element,force)

If the given element is not excluded in a full configuration or selected in a partial configuration, a warning or
error message will be created. The severity of the message will be defined by the Boolean force argument: If
the force argument is missing or TRUE, an error message will be created. If the force argument is FALSE, only
awarning message is created. This function will always return TRUE. If activated, the auto resolver will try to

resolve warning and error messages created by this function by excluding the given element if possible.

Examples product ->price < 100 | MPLI ES

excluded. ', luxury, false)

pv: Excl usi onHi nt (' Because of the |ow price, feature \'|luxury\'

pv:Exp()

Return the Euler's number e raised to the power of the context number (exponent). The result value has type

ps:float.

Examples 1->pv: Exp() = 2.718281828459045
(-1.2)->pv: Exp() = 0.30119421191220214

pv:Fail(message), pv:Fail(message,element)

Show an error message at the context element or the given element. Always returns TRUE. Lets the model eval-

uation fail.

Examples door s- >nunber = 2 OR
door s- >nunber = 4 OR

pv: Fai |l (" I nvalid nunber of doors [' + doors->nunber + ']',

pv:Flatten()

Flatten the context, which has to be a collection.

Exampl% LET
listl = {1, 2, 3, 4},
list2 = {{0},list1,{5}}
I'N
l'ist2->pv: Flatten()->pv: ToString()

pv:Floor()

Get the largest integer value not greater than the context number (round downwards towards negative infinity).

Failsif the context does not have number type. The return type is ps:integer.

Examples 3.1->pv: Floor() = 3
3.5->pv: Floor() =3
3.9->pv: Floor() =3
(-3.1)->pv: Floor() = -4
(-3.5)->pv:Floor() = -4

203

Function Library

‘(-3. 9)->pv:Floor() = -4

pv:ForAll(iterator)

Iterate the context collection and evaluate the iterator expression for all items. Return FALSE if at least for one
item the expression evaluatesto FAL SE.

Examples bugs- >pv: Chi I dren() - >
pv: ForAll (bug | bug->state = 'fixed')

pv:Format(format)

Return a formatted string representation of the context number. Fails if the context does not have number type.
Thereturn typeis ps:string.

The argument is a C-printf-like format specifier string. The supported strings are shown in Table 9.9, “ Supported
format specifiers’. The output is not localized.

Table 9.9. Supported format specifiers

Context number type Format specifier Meaning

ps:integer %d Decimal integer

ps:integer %X Hexadecimal integer with lower-case letters

ps:integer %X Hexadecimal integer with upper-case letters

ps:integer %0 Octal integer

ps:float %e Scientific (exponential) notation with six digits after
the decimal point. Uses alower-case letter '€ as the ex-
ponent symbol.

ps:float %.ne Scientific (exponential) notation with n digits after the
decimal point. Uses alower-case letter '€’ as the expo-
nent symbol.

ps:float %E Same as %e, but with upper-case letter 'E'

ps:float %.nE Same as %.ne, but with upper-case letter 'E'

ps:float %of Decimal (non-exponential) notation with six digits af-
ter the decimal point.

ps:float %.nf Decimal (non-exponential) notation with n digits after
the decimal point.

Dueto limited precision of ps:float values (they are internally represented in double-precision floating-point for-
mat), each ps.float value can be represented by at most 17 significant decimal digits. So, formatting a ps:float
value with more digits would pretend a higher precision in the output compared to the input. Additionally, the
exact formatted output in this excessive precision range depends on the runtime libraries of the used operation
system. So, the resulting string can be different across operation systems. In result, it is recommended to use the
format specifiers %.ne and %.nf only with n <= 16 and n <= 17-i respectively, wherei isthe number of significant
digits before the decimal point in non-exponential notation.

Examples 51966- >pv: Format (' %') = 'cafe’

3.14159265- >pv: Format (' %') = ' 3. 141593
3.14159265- >pv: Format (' % ') = ' 3. 141593

6. 62607015e- 34->pv: Format (' %') = '6.626070e- 34"
6. 62607015e- 34->pv: Format (' % 0e') = '7e-34'

pv:Get(), pv:Get(index)

Get the value of an attributeif the context is an attribute or attribute value, or return the input value. If anindex is
given and the context is an attribute, return the attribute value at that index, or fail if the index isinvalid.

204

Function Library

Examples ‘ seasons- >or der - >pv: Get (2) = 'autum'

pv:HasAttribute(name)

Returns TRUE if the attribute with the given non-empty name exists on the context model or element, FALSE
otherwise. Calling this function with an empty name creates an error. Fails if the context does not have model
or element type.

Examples ‘sel f->pv: HasAttribute(' speed') = true

pv:HasElement(name-or-id)

Returns TRUE if the element with the given non-empty name or identifier exists, FAL SE otherwise. Calling this
function with an empty name or identifier creates an error. If called on amodel, only elements in that model will
be considered. It isan error if the function is called on anything else than a model.

Examples ‘ Model - >pv: HasEl enent (' seasons') = true

pv:HasModel(name-or-id)

Returns TRUE if the model with the given non-empty name or identifier exists, FALSE otherwise. Calling this
function with an empty name or identifier creates an error.

Examples ‘ pv: HasMbdel (' Weather') = true

pv:ID()

Get the unique identifier of the context, as ps:string, which must be a model, element, attribute, constant, or
relation, or fails otherwise.

Examples ‘cont ext->pv:ID() <> "'

pv:IndexOf(string-or-collection)

Return the index (starting at O) of the first occurrence of the given non-empty sub-string or collection item within
the context, or -1 if the given item was not found. Calling this function on a string with an empty string argument
creates an error. It is also an error if the context does not have string or collection type. The resulting index has

type ps:integer.

Examples | Hello Werld ->pv:IndexCf (" World) = 6
{1,2,3}->pv: IndexCf (2) =1
{1,2,3}->pv: I ndexCf (4) = -1

pv:Inform(message), pv:Inform(message,element)

Show an informational message at the context element or the given element. Always returns TRUE.

Examples sportedition AND NOT(rearspoil er) RECOMVENDS
pv: I nforn{' Rear spoiler reconmended for sport edition', rearspoiler)

pv:Insert(index,item)

Insert the given item into the context collection before the item at the given index. It is an error if the type of the
item is not compatible to the item type of the context collection. Using this function with index O is the same as
calling pv: Prepend(item) on the collection. And using this function with the size of the context collection asindex
is the same as calling pv: Append(item) on the collection. If the context collection is a set, then the item is only
inserted at the given index if not already contained in the set.

205

Function Library

Examples ->pv:lnsert(0,4) = {4}

,2,3}->pv:lnsert(3,4) ={1,2,3,4}

,2,3}->pv:lnsert(0,4) = {4,1,2,3}

,2,3}->pv:lnsert(1,4) ={1,4,2,3}

,2,3}->pv: AsSet ()->pv:Insert(0,3) = {1, 2, 3}->pv: AsSet ()
,2,3}->pv: AsSet ()->pv:Insert(0,4) = {4,1,2,3}->pv: AsSet ()

Lt N et Nata Waan Waas Wee s)
e e N N

pv:InsertAll(index,collection)

Insert the given items into the context collection before the item at the given index. It isan error if the type of the
argument collection is not compatible to the type of the context collection. Using this function with index O isthe
same as calling pv: PrependAll(collection) on the collection. And using this function with the size of the context
collection asindex is the same as calling pv: AppendAll(collection) on the collection. If the context collectionisa
set, then only items from the argument collection are inserted at the given index if not already contained in the set.

Examples [{1->pv:insertAll(0,{1,2}) = {1,2}
{1,2,3}->pv:InsertAll(3,{4,5}) ={1,2,3,4,5}
{1,2,3}->pv:InsertAll(0,{-2,0}) = {-1,0,1, 2,3}
{1,2,3}->pv:InsertAll(1,{1,1,2}) ={1,1,1,2,2,3}
{1,2,3}->pv: AsSet ()->pv:InsertAl(3,{1,2,3,4,5}) = {1,2,3,4,5}->pv: AsSet ()

pv:lsContainer()

Return TRUE if the context is acontainer, i.e. acollection like list or set.

Examples ‘sel f->pv: I sCont ai ner () RECOMVENDS sel f->pv: Size() > 1

pv:IsFixed()

Return TRUE if the context attribute has a fixed value. Fails if the context does not have attribute type.

Examples ‘self->pv:IsFi xed() = TRUE

pv:Isinheritable()

Return TRUE if the context attribute isinheritable. Failsif the context does not have attribute type.

Examples ‘sel f->pv:Islnheritable() = FALSE

pv:IsKindOf(type)

Returns TRUE if the type of the context object is the same as the non-empty type given as argument, or a type
derived from it. Calling this function with an empty type creates an error.

The type of the context object needs to be defined in atype model. Otherwise it will always return FALSE.

Examples ‘seasons- >pv: | sKi ndOf (' ps: feature') = TRUE

pv:item(index)

Get the item with the given index (starting at 0) of the context collection or the character with the given index of
astring. Falil if the context does not have collection or string type, or the index isinvalid.

Examples | seasons->pv: Chi I dren() - >
pv: lten(0)->pv: Nane() = 'spring'

pv:lterate(accumulator)

Iterate the context collection and return the value accumulated by evaluating the iterator expression for each ele-
ment of the collection. The return type is that of the accumulated value.

206

Function Library

Examples pv:Inform(' Current price is ' +
product s- >pv: Sel ect edChi | dren() - >
pv:lterate(product; price = 0 | price + product->price) + '$')

pv:Log()

Return the natural logarithm (base €) of the context number. The result value has type ps:float. Thisfunction must
not be called on zero and negative numbers.

Examples 1->pv: Log() = O
0.2->pv:Log() = - 1.6094379124341003

pv:Logl0()

Return the common logarithm (base 10) of the context number. The result value has type ps:float. This function
must not be called on zero and negative numbers.

Examples | 100- >pv: Log10()
0. 2->pv: Logl0()

2
-0.6989700043360187

pv:Max(), pv:Max(number)

If called on a number collection and no arguments, it returns the greatest number of the collection. If called on a
single number and one number argument (both either ps:integer or ps:float), it returns the greater of the context
number and the argument number. The return type is ps.integer or ps:float depending on the type of the context.
Theresult for an empty collectionisO.

Examples (1,2, 3, 4}->pv: Max() = 4
2->pv: Max(4) = 4

pv:Min(), pv:Min(number)

If called on anumber collection and no arguments, it returns the smallest number of the collection. If called on a
single number and one number argument (both either ps:integer or ps:float), it returns the smaller of the context
number and the argument number. The return type is ps.integer or ps:float depending on the type of the context.
Theresult for an empty collectionisO.

Examples (1,2, 3,4}->pv:Mn() = 1
2->pv:Mn(4) =2

pv:Mod(divisor)

Return the remainder of the devision of the context integer number (dividend) with the argument integer number
(divisor, modulo operation). Thereturn typeis ps:integer. If the dividend is anegative number, then the remainder
also is negative. The divisor must not be zero. A negative divisor istreated asif it were positive.

Examples |5 >pv: mod(3) = 2
5->pv: Mod(-3) = 2
(-5)->pv: Md(3) = -2
(-5)->pv: Mod(-3) = -2

pv:Model(), pv:Model(name-or-id)

Get the model, as ps:model, containing the context element, or the model with the given non-empty name or
identifier if not called on an element. It is an error if the function is called on anything else than an element or
configuration space, or if it is called with an empty model name or identifier.

Examples NOT(cont ext - >pv: Model () - >pv: Root El enent ())
| MPLI ES pv: Fail (' Root el enent of nodel ' +

207

Function Library

cont ext - >pv: Model () ->pv: Name() + ' nust be sel ected')

pv:Models(), pv:Models(type)

Get all models of a configuration space as ps:model[] collection. Optionally accepts a non-empty model type
as argument to get only the models of a specific type. The parameter type is of ps:string type. See Table 5.1,
“Mapping between input and concrete model types’ for thelist of applicable type names. Calling the function with
an empty model type string creates an error. If applied on an object, call failsif the object isnot of configuration

space type (‘ps:configspace).

Examples

pv: Model s(' ps:fm)->pv: Size() > 1
/* applicabl e everywhere, nunber of feature nodels nmore than 1 */

cont ext - >pv: Parent () - >pv: Model s() ->pv: Si ze() > 1
/* this formonly in constraints*/
/* context of constraint is a nodel, parent is config space */

pv:Name()

Get the name of the context, as ps: string, which must be a model, element, or attribute, or fail otherwise.

Examples

sel f->pv: Sel ectionState() = 'ps:nonsel ectable' | MLIES
pv:Warn(' Feature ' + self->pv:Nane() + ' is now non-sel ectable!")

pv:Parent()

Get the parent of the context, or fail if the context isnot amodel, element, relation, attribute, or attribute value. The
parent of amodel isthe corresponding configuration space, of an element its parent element, or the corresponding
model if it istheroot element, of arelation the element on which the relation is defined, of an attribute the element
on which the attribute is defined, and of an attribute value the attribute containing the value.

Examples ‘

summer - >pv: Parent () - >pv: Name() = 'seasons

pv:Pow(exponent)

Return the value of the context number (base) raised to the power of the argument number (exponent). If both, the
base and the exponent, are integers, then the result value has type ps:integer. Otherwise the result value has type
ps:float. If the base is negative, then the exponent has to be an integer.

Examples

2->pv: Pow(8) = 256
3. 14->pv: Pom(2) = 9. 8596

pv:Prepend(expr)

Prepend the value of expr to the context which must be a collection. It is an error if the type of the value is not
compatible to the item type of the collection.

Examples

{}->pv: Prepend(1) = {1}
{1, 2,3}->pv: Prepend(2) = {2,1, 2,3}
{1, 2,3}->pv: AsSet () - >pv: Prepend(2) = {1, 2, 3}->pv: AsSet ()

pv:PrependAll(collection)

Prepend the values of collection to the context, which must be acollection. It isan error if the types of collections
are not compatible.

Examples

{}->pv: PrependAl | ({1,2,3}) ={1,2,3}
{1, 2,3}->pv: PrependAl | ({21,3,5}) ={1,3,5,1,2,3}
{1, 2,3}->pv: AsSet () ->pv: PrependAl | ({1, 3,5}) = {5,1,2,3}->pv: AsSet ()

208

Function Library

pv:PVVersion()

Get the current version of pure:variants as ps:version. The result contains the complete version string, e.g.
'4.0.7.685'. To check against specific versions, comparison operators can be used.

Examples

pv: PWersion() >= '4.0.7.*" [/* at |least version 4.0.7 */
pv: PWer si on() 0.*" /* any service release of the 4.0 branch */
5

='4,
pv: PWersion() < '4. /* any rel ease before version 4.x */

pv:Relations(), pv:Relations(type)

Get the relations of class ps.dependencies defined on the context element, as ps:relation[]. Optionally accepts a
non-empty relation type as argument to get only relations of the given type. Calling this function with an empty
relation type creates an error. Fails if the context does not have element type.

Examples

speci al edi ti on->pv: Rel ati ons(' ny: extras')->
pv: ForAl |l (r | re->pv:Targets()->pv:Size() <> 0)

pv:Remove(item), pv:Remove(begin,end)

If called with an item as the single argument, then a new collection is returned containing all the items from the
context collection except of the given item. If called with an index range instead, then the resulting collection
contains al the items from the context collection except the items with index begin up to index end-1.

Examples

{*a,'b,'c,'b, a}->pv:Renove('b') ={'a,'c',"a}
{"a,"b",'c,"'b," a}->pv:Renove(0,2) = {'c','b","a}
{"a,'b,'c,"b, a}->pv:Renove(3,5) ={'a,'b,'c'}

pv:RemoveAll(collection)

If the context, which must be a collection, contains an element from the given collection, this element is removed
from the context.

Examples ‘{1, 2,3,2, 1}->pv: RemoveA | ({1,3}) = {2, 2}

pv:RetainAll(collection)

If an element of the given collection isnot contained in the context, which hasto be acollection, it will be removed
from the context.

Examples ‘{1, 2,3,2,1}->pv: Retai nAl | ({2,3}) = {2, 3,2}

pv:Reverse()

Reverses the context, which has to be a collection.

Examples ‘{1,2,3,4,5}->pv:Reverse() ={5,4,3,2,1}

pv:RootElement()

Get the root element of the context model, as ps:element. Fails if the context does not have model type.

Examples ‘context->pv:RootEIenEnt()->pv:SeIected() = TRUE

pv:Round()

Get the integer value nearest to the context number. Positive context numbers are rounded up towards positive
infinity if the fractional part is equal to or greater than 0.5, and rounded downwards towards negative infinity

209

Function Library

otherwise. Negative context numbers are rounded downwards towards negative infinity if the fractional part is
equal to or greater than 0.5, and rounded up towards positive infinity otherwise. Failsif the context does not have
number type. The return typeis ps:integer.

Examples 3
4

4

- >pv: Round()
- >pv: Round()
- >pv: Round()
. 1) - >pv: Round()
. 5) - >pv: Round()
. 9) - >pv: Round()

WwwoaaRE

N~ W W
0 o § 5578

o n
o
NN V)

pv:Select(iterator)

Iterate the context collection and add all the collection items to the result list for which the iterator expression
evaluates to TRUE. Thereturn typeisthe type of the context collection.

Examples | customers->
pv: Sel ect (custoner | custoner->bal anced = FALSE)- >
pv: For Al | (cust oner |
pv: I nforn{'Send custoner ' + custonmer->id + ' a reminder'))

pv:Selected()

Return TRUE if the context element or attribute exists in the variant, FALSE otherwise. Failsif the context does
not have element or attribute type.

Examples ‘ sel f EQUALS sel f->pv: Sel ect ed()

pv:SelectedChildren(), pv:SelectedChildren(type)

Deprecated. Get all children in the sub-tree of the context element that exist in the variant, as ps:.element[].
Optionally accepts a non-empty element type as argument to get only child elements with the given type. Calling
this function with an empty element type creates an error. Failsif the context does not have element type.

Thisfunction is deprecated since pure::variants version 5.0.0. Please use function pv: SubTree instead.

Examples | el enent - >pv: SubTr ee(f al se) - >pv: Sel ect (e| e- >pv: Sel ect ed)
el ement - >pv: SubTr ee(f al se) - >pv: Sel ect (e| e- >pv: Sel ect ed and
e->pv: Type='ny: feature')

pv:SelectionHint(message,element),
pv:SelectionHint(message,element,force)

If the given element is not selected in a full configuration or excluded in a partial configuration, a warning or
error message will be created. The severity of the message will be defined by the Boolean force argument: If
the force argument is missing or TRUE, an error message will be created. If the force argument is FALSE, only
awarning message is created. This function will always return TRUE. If activated, the auto resolver will try to
resolve warning and error messages created by this function by selecting the given element if possible.

Examples | product - >price > 1000 | MPLI ES
pv: Sel ecti onHi nt (' Because of the high price, feature \'luxury\' could be
sel ected.', luxury, false)

pv:SelectionState()

Get the selection state of the context element, as ps:string. Failsif the context does not have element type. The
selection state is one of ps:selected, ps:excluded, ps:unselected, or ps: nonsel ectable.

Examples ‘ai rbags- >pv: Sel ectionState() = 'ps:excl uded'

210

Function Library

‘ REQUI RES speed->max < 30

pv:Selector()

Get the selector of the context element, as ps.string. Failsif the context does not have element type. The selector
is ps.user for user selections, ps.auto for all other selections, or none for elements that neither are explicitly or
automatically selected nor excluded.

Examples | self | MPLIES sel f->pv: Sel ector() = 'ps:user’
OR pv:Inforn(' Feature ' + self->pv:Nanme() +
' was added automatically')

pv:Sin()

Return the trigonometric sine of the context number. The result value has type ps:float.

Examples | o->pv:sin() = 0

0.2->pv:Sin() = 0.19866933079506122
100->pv: Sin() = - 0.5063656411097588
(-100)->pv: Sin() = 0.5063656411097588

pv:Size()

Get the number of attribute values for attribute types, collection itemsfor collection types, or charactersfor string
types as ps:integer. For any other context type, 1 is returned.

Examples seasons->pv: Chi | dren()->pv: Size() = 4 AND
seasons- >pv: Sel ect edChi l dren()->pv: Size() = 1

pv:Sort()

Sort the items of the context collection in ascending order. Numbers are sorted by value and precede strings.
Strings are sorted al phabetically where upper-case characters precede | ower-case characters. Collections are sorted
by their elements.

Examples (1,3, 2} >pv Sort() ={1,23)

{'c' b'}->pv:Sort() = {'C, ‘c'}

{1.6, - 1 0,0.3}->pv: Sort () = {- 1.0,0.3,1.6}

{ {31}, {1,3}, {2,1}, {1,2} }->pv:Sort() ={ {1,2}, {1,3}, {21}, {3,1} }

{ {{3,1},{1,3}, {{2,1},{1,2}} }->pv:Sort() ={ {{2 1},{1,2}}, {{3,1},{1,3}} }
pv:Sqrt()

Return the sgquare root of the context number. The result value has type ps:float. This function must not be called
on negative numbers.

Examples | 9->pv:sgrt() = 3
1.2->pv:Sqrt() = 1.0954451150103321

pv:SubList(begin), pv:SubList(begin,end)

Return anew collection that is a sub-collection of the context collection. The sub-collection begins at the specified
begin index and extends to the end-1 index or end of the context collection. It is an error if the context does not
have collection type.

Examples (1,2, 3, 4,5}->pv: SubList(0) = {1,2, 3,45}
{1,2,3,4,5}->pv: SubList(2) = {3,4,5}
{1, 2,3,4,5}->pv: SubList(5) = {}
{1,2,3,4,5}->pv: SubList(1,4) = {2,3,4}
{1,2,3,4,5}->pv: SubList(0,0) = {}
{1, 2,3,4,5}->pv: SubList(0,1) = {1}

211

Function Library

pv:SubString(begin), pv:SubString(begin,end)

Return a new string, as ps:string, that is a sub-string of the context string. The sub-string begins at the specified
begin index and extends to the end-1 index or end of the context string. It is an error if the context does not have
string type.

Examples "Hello World' ->pv: SubString(6) = 'Wrld
‘smiles' ->pv:SubString(1,5) = "'mle'

pv:SubTree()

Get all elementsof amodel, or just asub-tree. If the context isamodel, then all elementsof that model are returned.
If the context is an element and the function is called without an argument or with true as argument, then the sub-
tree with this element as root is returned. If called on an element with argument false, then the context element
will not be part of the result.

Examples model - >pv: SubTr ee- >pv: For Al | (e| not (e- >pv: Sel ect ed))
el enent - >pv: SubTr ee(f al se) - >pv: Sel ect (e| e->pv: Sel ected) ->pv: Size > 0

pv:Sum()

Return the sum of all numbersin the context collection, or fail if the context is not anumber collection. Thereturn
typeis ps.integer or ps:float depending on the type of the collection. The sum of an empty collection isO.

Examples ‘{1, 2,3, 4}->pv: Sum() = 10

pv:Tan()

Return the trigonometric tangent of the context number. The result value has type ps:float.

Examples | o->pv: Tan() = 0

0. 2->pv: Tan() 0.2027100355086725
100- >pv: Tan() -0.5872139151569291
(-100)->pv: Tan() = 0.5872139151569291

pv:Target(index)

Get the relation target with the given index of the context relation, as ps.element. Fails if the context does not
have relation type.

Examples ‘ sel f->pv: Target (0) XOR sel f - >pv: Tar get (1)

pv:Targets()

Get the relation targets of the context relation, as ps.element[]. Failsif the context does not have relation type.

Examples | self->pv: Type() = ' ps: di scourages' AND
sel f->pv: Targets()->pv: ForAl | (el ement |
pv: Warn(' You better deselect element ' + el ement->pv: Name())))

pv:Time()

Returnsthe time of the given date time value. The result typeis ps:time. If the given date time value istimezoned,
the resulting time is also timezoned.

Examples pv: Eval uat i onDat eTi me() - >pv: Ti me() - >ToSt ri ng()
' 2020- 02- 28T10: 24: 42' - >pv: ToDat eTi me() - >pv: Ti me() - >pv: ToString() = '10: 24: 42. 000’
' 2020- 02- 28T10: 24: 42+01: 00' - >pv: ToDat eTi me() - >pv: Ti me() - >pv: ToStri ng() =

' 09: 24: 42. 000Z'

212

Function Library

pv:ToDate()

Converts the context string containing a date in XML Schema date format with or without time zone into a date
value of type ps:.date. The supported format is: * -* 2[0-9]{4,}' -' [0-1][0-9]'-'[0-3][0-9]1 (' Z' | (" +|'-")
[0-2][0-9]":'[0-9][0-9])2 It hasto be an existing date in the Gregorian calendar and the time zone, if given,
has to be in range +14:00 to -14:00. During conversion the eventually existing time zone is hormalized to so-
called recoverable time zone, which has the range +12:00 to -11:59. It fails, if the date format is invalid, or the
given date does not exist.

Examples ' 2020- 02- 28- >pv: ToDat e() - >pv: ToStri ng() = ' 2020- 02- 28'

' 2020- 02- 28Z' - >pv: ToDat e() - >pv: ToString() = '2020-02-28Z

' 2020- 02- 28+01: 00" - >pv: ToDat e() - >pv: ToStri ng() = '2020-02-27Z
' -0050- 07- 13" - >pv: ToDat e() - >pv: ToString() = '-0050-07-13'

pv:ToDateTime()

Converts the context string containing a date and time in XML Schema dateTime format
with or without time zone into a date time value of type ps.datetime. The supported format
is '-"?[0-9]{4,}'-"[0-1][0-9]'-"[0-3][0-9]' T'[0-2][0-9]":"[0-5][0-9]":"[0-5][0-9](".'[0-9]+)?
("Z (" +]"-")[0-2][0-9]":'[0-9][0-9])? Ithasto be an existing datein the Gregorian calendar and the time
zone, if given, hasto bein range +14:00 to -14:00. During conversion the timeisrounded to millisecond precision
and, if atime zoneis given, thetimeisnormalized to GMT. It fails, if the date time format isinvalid, or the given
date or time does not exist.

Examples ' 2020- 02- 28T12: 34: 56' - >pv: ToDat eTi me() - >pv: ToStri ng() = ' 2020-02-28T12: 34: 56. 000’
' 2020- 02- 28T12: 34: 56. 257" - >pv: ToDat eTi me() - >pv: ToStri ng() =

' 2020- 02- 28T12: 34: 56. 250Z'
' 2020- 02- 28T00: 02: 42. 123+01: 00' - >pv: ToDat eTi me() - >pv: ToStri ng() =

' 2020- 02- 27T23: 02: 42. 1237

pv:ToFloat()

Convert the context number to afloating point number. Failsif the context does not have number type. Thereturn
typeis ps:float.

Examples ‘1->pv:ToF| oat() = 1.0

pv:ToLowerCase()

Convert all characters of the context string to lower case. Failsif the context does not have string type. Thereturn
typeis ps.string.

Examples ‘ Hel | o' - >pv: ToLower Case() = ' hell o'

pv:ToString(), pv:ToString(delimiter), pv:ToString(delimiter,last delim-
iter)

Return a string representation of the context object. The return typeis ps:string.

If adelimiter is given, then the context object needs to be a collection. Instead of just converting the collection to

a string, the collection items are listed each separated from the other using the given delimiter. If additionally a
last delimiter is given, then this delimiter isinserted between the last item in the collection and its predecessor.

Examples |6->pv: ToString() = '6'
{1,2,3}->pv: ToString = '{1, 2, 3}'
{1,2,3}->pv: ToString('+) = "'1+2+3

{1, 2,3}->pv: ToString(', ',', and ') ='1, 2, and 3
{{100, -100}, {30, 75}, {10} }->pv: ToString(', ',', and ') = '{100,-100}, {30,75}, and
{10}

213

Function Library

pv:ToTim

e()

Converts the context string containing atime in XML Schema time format with or without time zone into atime

value of type
¢+ -1)ro-

ps:time. The supported format is: [0-2][0-9]"':'[0-5][0-9]':"[0-5][0-9]('.'[0-9]+)?(' Z'|
2][0-9]':'[0-9][0-9])? The time zone, if given, has to be in range +14:00 to -14:00. During

conversion the time is rounded to millisecond precision and, if atime zone is given, the time is normalized to

GMT. It falls,

if the time format isinvalid, or the given time does not exist.

Examples

'12:34:56' ->pv: ToTi me()->pv: ToString() = '12: 34:56. 000
'12:34:56. 25Z' - >pv: ToTi ne() - >pv: ToString() = '12: 34: 56. 250Z'
' 00: 02: 42. 123+01: 00' - >pv: ToTi ne() - >pv: ToString() = '23:02:42.1237

pv:ToUpperCase()

Convert all characters of the context string to upper case. Failsif the context does not have string type. Thereturn
typeis psstring.

Examples ‘

‘Hel | o' - >pv: ToUpper Case() = 'HELLO

pv:Truncate()

Convert the context number into an integer by truncating the fractional digits. Fails if the context does not have
number type. The return type is ps:integer.

Examples

3->pv: Truncate() = 3
1.9->pv: Truncate() = 1
(-2.6)->pv: Truncate() = -2

pv:Type()

Get the type of the context as ps: string.

Examples "hell o' ->pv: Type() = 'ps:string'
42->pv: Type() = 'ps:integer'
Feat ureA- >pv: Type() = 'ps:feature’
pv:VariationType()

Get the variation type of the context element or attribute, as ps.string. Failsif the context does not have element or
attribute type. The variation type of attributesalwaysis ps: mandatory, and of elements ps. mandatory, ps:optional,
ps:or, or ps.alternative.

Examples ‘

summer - >pv: Vari ati onType() = 'ps:alternative'

pv:VName(), pv:VName(language)

Get the visible name of the context, as ps:string, which must be an element, or fail otherwise. Optionally the non-
empty languageidentifier can be specified. Calling the function with an empty language identifier createsan error.

If no language is given, the visible name with no specified language will be returned. If no such visible name

exists, any oth
be returned. If

er visible name will be returned. If no visible name is defined for the element, an empty string will
alanguage is specified, the visible name in the given language will be returned if available. If no

such visible name exists the function falls back to the version without given language.

Examples

sel f->pv: Sel ectionState() = 'ps:nonsel ectable' | MLIES
pv: Warn(' Feature ' + self->pv:VNanme() + ' is now non-sel ectable!")

pv:Warn(message), pv:Warn(message,element)

214

User-Defined pvSCL Functions

Show awarning message at the context element or the given element. Always returns TRUE.

Examples | car->wheels > 4 | MPLIES
pv: Warn(' Too many wheels (' + car->wheels + ') configured', car)

9.7.24. User-Defined pvSCL Functions

For complex restrictions and calculations it may be useful to provide additional functions, e.g. to ssimplify the
expressions or to share code. For the expression language pvSCL acode library can be defined in each model. This
is done by entering the code into the pvSCL Code Library properties page of a model (see Figure 9.1, “pvSCL
Code Library Model Property Page’).

Figure 9.1. pvSCL CodeLibrary Model Property Page

& Properties for Wsadm O *
type filter text pvSCL Code Library =T v
Resocurce
I_u;| Access Rights /* Calculates the numerical sum of all
|:‘u_| General Properties the name 'attr' for all selected elements below '"element' */
|:‘n_| Model DEF sumSelectedSubtreefttributes (element, attr) =
r";l pvSCL Code Library element->pv:SelectedChildren() —>
Run/Debug Settings pv:Selectie | e-»>pv:HasAttribute (attr))->
) pv:Iterate| e; sum=0 | sum + e-»pviAttribute (attr)->pv:Get() }:
/* Return first selected child element */f

DEF firstSelected(e) =
e->pv:ChildrenByState ('ps:selected')->pv:Item(0);

Restore Defaults Apply

Each feature or family model in a Configuration Space can define code libraries. Code defined in onemodel isalso
availablein al other models of the same configuration space. Defining the same function in more than one model,
will redefinethe function. Sincethereisno explicit model |oading order the used version of thefunction may differ.

9.8. XSLT Extension Functions

Several extension functions are available when using the XSLT processor integrated in the pure::variants XML
Transformation System for model transformations and model exports. These extension functions are defined in
own namespaces. Before they can be used in an XSLT script, the corresponding namespaces have to be included
using the "xmiIns" stylesheet attribute:

<?xm version="1.0" encodi ng="UTF-8"?>

<xsl : styl esheet version="1.0"
xm ns: xsl ="htt p: // ww. w3. or g/ 1999/ XSL/ Tr ansf or ni’
xm ns: pv="htt p: // www. pur e- syst ens. coni pur evari ant s"
ext ensi on- el ement - pr ef i xes="pv" >

...any script content...

</ xsl : styl esheet >

After including the namespace, the extension functions can be used in X Path expressions using the defined names-
pace prefix, e.g. F .

215

XSLT Extension Functions

Thefollowing extension functions are defined in the namespace " http://www.pure-systems.com/purevariants” and
provide access to the pure::variants model information.

Table 9.10. Extension functions providing model infor mation

Function

Description

nodeset nodel s()

Get all input models known to the transformer, i.e. the opened variant
description model, and all Feature and Family Models of the Config-
uration Space without any modifications. See Section 5.9.2, “ Variant
Result Models” for more information about the transformation input.

Note: Inthepure::variants Server Edition thisfunction returnsan emp-
ty set. Accessto theinput models of the transformation is not support-
ed in the pure::variants Server Edition.

nodeset nodel - by-id(string)

Get al variant Result Models known to the transformer having the
given id. The Result Models are derived from the models of the Con-
figuration Space describing a single concrete solution drawn from the
solution family. See Section 5.9.2, “ Variant Result Models” for more
information about the transformation input.

nodeset nodel - by- name(string)

Get all Variant Result Models known to the transformer having the
given name. The Variant Result Models are derived from the models
of the Configuration Space describing asingle concrete solution drawn
from the solution family. See Section 5.9.2, “ Variant Result Models
" for more information about the transformation input.

nodeset nodel - by-type(string)

Get all Variant Result Models known to the transformer having the
giventype. The Variant Result Models are derived from the model s of
the Configuration Space describing a single concrete solution drawn
from the solution family. Valid types are ps:vdm, ps.cfm, and ps:ccm
. See Section 5.9.2, * Variant Result Models ” for more information
about the transformation input.

bool ean hasFeat ure(string)

Return true if the feature, given by its unique name or id, is in the
variant.

bool ean hasConponent (string)

Return true if the component, given by its unique nameor id, isin the
variant.

bool ean hasPart (string)

Return trueif the part, given by itsunique name or id, isin the variant.

bool ean hasSour ce(string)

Return true if the source, given by its unique name or id, isin the
variant.

bool ean hasEl enent (string id)

Return true if the element, given by itsuniqueid, isin the variant.

bool ean hasEl enent (string
nane, string class,string type?)

Return true if the element, given by its unique name, class, and (op-
tionally) type, isin the variant.

nodeset get El ement (string id)

Return the element given by itsuniqueid.

nodeset get El ement (string
name, string class,string type?)

Return the element given by its unique name, class, and (optionally)
type.

nodeset
get Chi l drenTargets(string id)

Return the full qualified ids of the children elements of the element
with the given id.

nodeset get Chil drenTar get s(nodeset
el enent)

Return the full qualified ids of the children elements of the given el-
ement.

nodeset get Chil drenTargets(string
enane, string eclass,string etype?)

Return the full qualified ids of the children elements of the element
given by its unique name, class, and (optionally) type.

bool ean hasAttribute(string id)

Return true if the attribute, given by its uniqueid, isin the variant.

bool ean hasAttri but e(nodeset
el ement, string nane)

Return true if the attribute, given by its name and the element it be-
longsto, isin the variant.

216

XSLT Extension Functions

Function

Description

bool ean hasAttribute(string
eid, string nane)

Return trueif the attribute, given by itsname and the id of the element
it belongs, to isin the variant.

bool ean hasAttribute(string
enane, string ecl ass, string
etype?, string nane)

Return true if the attribute, given by its name and the unique name,
class, and (optionally) type of the element it belongsto, isin the vari-
ant.

nodeset getAttribute(string id)

Return the attribute given by its unique id.

nodeset get Attri but e(nodeset
el ement, string nane)

Return the attribute given by its name and the element it belongs to.

nodeset getAttribute(string
eid, string nane)

Return the attribute given by its name and the id of the element it
belongsto.

nodeset getAttribute(string
enane, string ecl ass, string
etype?, string nane)

Return the attribute given by its name and the unique name, class, and
(optionally) type of the element it belongs to.

bool ean hasAttri but eVal ue(nodeset
attribute)

Return true if the given attribute has avalue.

bool ean
hasAttri but eVal ue(string id)

Return true if the attribute given by its unique id has avalue.

bool ean hasAttri but eVal ue(nodeset
el enent, string nane)

Return true if the attribute, given by its name and the element it be-
longsto, has avalue.

bool ean hasAttri buteVal ue(string
ei d, string nane)

Return trueif the attribute, given by its name and theid of the element
it belongs to, has avalue.

bool ean hasAttri buteVal ue(string
enane, string ecl ass, string
etype?, string nane)

Return true if the attribute, given by its name and the unique name,
class, and (optionally) type of the element it belongsto, has avalue.

nodeset get Attri buteVal ue(nodeset
attribute)

Return the values of the given attribute.

nodeset
get AttributeVal ue(string id)

Return the values of the attribute given by its unique id.

nodeset get AttributeVal ue(nodeset
el enent, string nane)

Return the values of the attribute given by its name and the element
it belongs to.

nodeset get AttributeVal ue(string
eid, string nane)

Return the values of the attribute given by its name and the id of the
element it belongs to.

nodeset getAttributeVal ue(string
enane, string eclass, string
etype?, string nane)

Return the values of the attribute given by its name and the unique
name, class, and (optionally) type of the element it belongs to.

The following extension functions are defined in the namespace "http://www.pure-systems.com/xmits’ and pro-
vide basic information about the current transformation.

Table 9.11. Extension functions providing transfor mation infor mation

Function

Description

string os()

Get thetarget system type. Thisiseither the string "win32", "macosx”,
or "linux" (default).

string version()

Get the transformation system version.

string input-path()

Get the transformation input path.

string output-path()

Get the transformation output path.

string generate-id()

Generate an unique identifier.

nodeset current()

Get the node currently being transformed.

217

XSLT Extension Functions

Function

Description

nodeset entry-points()

Get the transformation entry point list, i.e. alist of full qualified ele-
ment IDs. Transformation modules can use this list to identify sub-
trees of the input models that are to be transformed.

bool ean bel ow en\
try-point(string id)

Return true if the given full qualified element ID denotes an element
below a transformation entry point. Transformation modules can use
this function to identify sub-trees of the input models that are to be
transformed.

nodeset exit-points()

Get thetransformation exit point list, i.e. alist of full qualified element
IDs. Transformation modules can use thislist to identify sub-trees of
the input models that are to be ignored.

bool ean above- ex\
it-point(string id)

Return true if the given full qualified element ID denotes an element
above a transformation exit point. Transformation modules can use
this function to identify sub-trees of the input models that are to be
ignored.

nodeset re\
sul ts-for(nodeset nodes?)

Get the transformation module results for the given nodes. If no argu-
ment is given, then the results for the context node are returned.

nodeset | og(string
nmessage, nunber | evel ?)

Add alogging message that is shown in the Console View. The first
parameter is the message and the second the logging level (0-9). Itis
recommend to use alogging level between 4 (default) and 8 (detailed
tracing). Returns the empty nodeset.

nodeset info(string nmessage, string
i d?, nodeset rel ated?)

Add an info message that is shown in the Problems View resp. as
marker on a model element. The first parameter is the message. All
other parameters are optional. The second isthe ID of the context el-
ement of the info (used to place the marker), and the third is a set of
IDs of related model elements. Returns the empty nodeset.

nodeset warni ng(string
nessage, string
i d?, nodeset rel ated?)

Add awarning message that is shown in the Problems View resp. as
marker on a model element. The first parameter is the message. All
other parameters are optional. The second isthe ID of the context el-
ement of the info (used to place the marker), and the third is a set of
IDs of related model elements. Returns the empty nodeset.

nodeset error(string
nessage, string
i d?, nodeset rel ated?)

Add an error message that is shown in the Problems View resp. as
marker on a model element. The first parameter is the message. All
other parameters are optional. The second isthe ID of the context el-
ement of the info (used to place the marker), and the third is a set of
IDs of related model elements. Returns the empty nodeset.

Note

Error messages may abort the XSLT script execution and the
whole transformation.

Table 9.12. Extension elementsfor logging and user messages

Element

Description

<l og | evel ="0-9">message</| og>

Add alogging messagethat isshownin the Console View. The option-
al attribute "level" specifies the logging level (0-9). It is recommend
to use alogging level between 4 (default) and 8 (detailed tracing).

<info context="el ement id"
rel at ed="nodeset " >nessage</ i nf 0>

Add an info message that is shown in the Problems View resp. as
marker on amaodel element. The optional attribute "context" specifies
the ID of the context element of the info (used to place the marker).
The optional attribute "related” specifies a set of IDs of related model
elements.

218

XSLT Extension Functions

Element

Description

<war ni ng cont ext="el enent id"
rel at ed="nodeset " >nessage</
war ni ng>

Add awarning message that is shown in the Problems View resp. as
marker on amodel element. The optional attribute "context" specifies
the ID of the context element of the info (used to place the marker).
The optional attribute "related" specifies a set of IDs of related model
elements.

<error context="elenment id"
rel at ed="nodeset " >nessage</ error >

Add an error message that is shown in the Problems View resp. as
marker on amodel element. The optional attribute "context" specifies
the ID of the context element of the info (used to place the marker).
The optional attribute "related” specifies aset of 1Ds of related model
elements.

Note

Error messages may abort the XSLT script execution and the
whole transformation.

Thefollowing extension functions are defined in the namespace " http://www.pure-systems.com/path" and provide

additional file operations.

Table 9.13. Extension functions providing file operations

Function

Description

string normalize(string path)

Normalized the given path for the current target plat-
form.

string dirnanme(string path)

Get the directory part of the given path.

string filename(string path)

Get the file part of the given path.

string basenanme(string path)

Strip the file extension from the given path.

string extension(string path)

Get the file extension from the given path.

string absol ute(string path)

Make the given path absolute (i.e. full path).

string add-part(string path,string part)

Add thegiven part to the path using the platform specific
path delimiter.

nunber size(string file)

Get the size (in bytes) of the givenfile.

nunber ntine(string path)

Get the modification time of the given file or directory.

string cwd()

Get the current working directory.

string tenpdir()

Get the directory for temporary files.

string delimter()

Get the path delimiter of the target platform.

bool ean exi sts(string path)

Return true if the given file or directory exists.

bool ean is-dir(string path)

Return true if the given path pointsto a directory.

bool ean is-file(string path)

Return true if the given path pointsto afile.

bool ean i s-absol ute(string path)

Return true if the given path is absolute (i.e. full path).

string to-uri(string path)

Get the file URI build from the given path (i.e.
file://...).

string read-file(string uri)

Read a file from a given URI and return its content as
string.

The following extension functions are defined in the namespace "http://www.pure-systems.com/string" and pro-

vide additional string operations.

219

Predefined Variables

Table 9.14. Extension functions providing string oper ations

Function

Description

nodeset parse(string xm)

Parse the given string as XML and return the resulting
node set.

bool ean matches(string str,string pattern)

Match the regular expression pattern against the given
string. Return true if the pattern matches.

nodeset match(string str,string pattern)

Match the regular expression pattern against the given
string and return the set of sub-matches.

string submatch(string
str,string pattern, nunber n)

Match the regular expression pattern against the given
string and return the n-th sub-match.

string replace(string str,string
pattern, string replacenent, nunber n?)

Replace the matches in the given string with the re-
placement string using the regular expression match pat-
tern. The optional fourth parameter specifies the maxi-
mal number of replacements. 0 meansall, 1 meanstore-
place only thefirst, 2 meansto replace the first 2 match-
es etc. Returns the resulting string.

string expand(string str)

Expand variables in the given string and return the ex-
panded string. Variables are recognized by the follow-
ing pattern: $(VAR ABLENAME) . See Section 9.9, “ Pre-
defined Variables” for thelist of supported variables.

Further information about XSLT extension functions is available in the externa document XML Transfor mation

System .

9.9. Predefined Variables

There are several placesin pure::variants where variables are supported. That are for instance the transformation
input and output paths as well as in the parameters of transformation modules. The following pattern is used for
accessing variables: $(VAR ABLENAME) .

Table 9.15. Supported Variables

Variable

Description

CONFI GSPACE

Path to the Configuration Space folder.

CONFI GSPACE_NAME

Name of the Configuration Space.

ENV: vari abl e

The content of the environment variable with the given name.

| NPUT Transformation input directory.
MODUL EBASE Path to the transformation module base folder.
QUTPUT Transformation output directory.
PRQJECT Path to the folder of the current project.
PRQIECT: nane Path to the folder of the project with the given name.
QUALI FI ER The actual time stamp in the form yyyyMMddHHmMmss, e.g. 20190101143045.
TRANSFORM.OG Path to the transformation log file.

TRANSFORVATI ON

The name of the transformation configuration which triggered the current transfor-
mation.

VARI ANT

Name of the current variant, i.e. the name of the VDM currently being evaluated
resp. transformed.

VARI ANTSPATH

Name of the currently being eval uated resp. transformed VDM prefixed by the names
of the parent VDMs. The names are separated by a dash. If a VDM is not linked,
then the value of VARI ANTSPATH isidentical to the value of VARI ANT .

220

Regular Expressions

Variable

Description

WORKSPACE

Path to the workspace folder.

9.10. Regular Expressions

Regular expressions are used to match patterns against strings.

9.10.1. Characters

Within a pattern, al charactersexcept ., |, (,), [, {, +,\, A, $, *, and ? match themselves. If you want to match one
of these special characters literally, precede it with a backslash.

Patterns for matching single characters:

X Matches the character x.

\ Matches nothing, but quotes the following character.

\\ Matches the backslash character.

\On Matches the character with octal valueOn (0 <=n<=7).
\Onn Matches the character with octal value Onn (0 <=n<=7).

\Omnn Matches the character with octal value Omnn (0 <=m<=3,0<=n<=7).

\xhh Matches the character with hexadecimal value Oxhh.

\uhhhh Matches the character with hexadecimal value Oxhhhh.

\t Matches the tab character (\u0009").

\n Matches the newline (line feed) character (\UOOOA").
\r Matches the carriage-return character (\uOOOD").

\f Matches the form-feed character (\uOOOC").

\a Matches the alert (bell) character (\u0007").

\e Matches the escape character (\u0O01B").

\cx Matches the control character corresponding to x.

To match a character from a set of characters the following character classes are supported. A character classis
a set of characters between brackets. The significance of the special regular expression characters ., |, (,), [, {, +,
A $, *, and ?isturned off inside the brackets. However, normal string substitution still occurs, so (for example)
\b represents a backspace character and \n a newline. To include the literal characters] and - within a character
class, they must appear at the start.

[abc]

["abc]
[azA-Z]
[a-d[m-p]]
[a-2& & [def]]

[a-z& & ["bc]]

Matches the characters a, b, or c.

Matches any character except & b, or ¢ (negation).

Matches the characters a through z or A through Z, inclusive (range).
Matches the characters a through d, or m through p: [adm-p] (union).
Matches the characters d, e, or f (intersection).

Matches the characters a through z, except for b and c: [ad-z] (subtraction).

221

Character Sequences

[az& & ["m-p]] Matches the characters a through z, and not m through p: [a-1g-z] (subtraction).

Predefined character classes:

Matches any character.
\d Matches adigit: [0-9].
\D Matches a non-digit: [*0-9].
\s Matches a whitespace character: [\t\n\xOB\f\r].
\S Matches a non-whitespace character: [M\g].
\w Matches aword character: [azA-Z_0-9].
\W Matches a non-word character: [Mw].

POSIX character classes (US-ASCII):

\p{ Lower} Matches a lower-case alphabetic character: [a-Z].

\p{ Upper} Matches an upper-case al phabetic character: [A-Z].

\p{ ASCII} Matches all ASCII characters: [\x00-\x7F].

\p{ Alpha} Matches an alphabetic character: [\p{ Lower}\p{ Upper}].
\p{ Digit} Matches adecimal digit: [0-9].

\p{ Alnum} Matches an alphanumeric character: [\p{ Alpha}\p{ Digit}].

\p{ Punct} Matches a punctuation character: one of !"#$%&'()* +,-./;;<=>?@[\|*_{[} ~
\p{ Graph} Matches avisible character: [\p{ Alnum}\p{ Punct}].

\p{ Print} Matches a printable character: [\p{ Graph}].

\p{ Print} Matches a space or atab: [\t].

\p{ Cntrl} Matches a control character: [\x00-\x1F\X7F].

\p{ XDigit} Matches a hexadecimal digit: [0-9a-fA-F].
\p{ Space} Matches a whitespace character: [\t\n\xOB\f\r].

Classes for Unicode blocks and categories:

\p{ InGreek} Matches a character in the Greek block (simple block).

\p{Lu} Matches an uppercase letter (simple category).

\p{ Sc} Matches a currency symbol.

\P{InGreek} Matches any character except onein the Greek block (negation).
[\p{L}&&[M\p{Lu}]] Matches any letter except an uppercase letter (subtraction).

9.10.2. Character Sequences

Character sequences are matched by string the characters together.

222

Repetition

XY Matches X followed by Y.

The following constructs are used to easily match character sequences containing special characters.
\Q Quotesal characters until \E.

\E Endsquoting started by \Q.

9.10.3. Repetition

Repetition modifiers allow to match multiple occurrences of a pattern.

X? Matches X once or not at all.
X* Matches X zero or more times.
X+ Matches X one or more times.
X{n} Matches X exactly n times.

X{n} Matches X at least n times.
X{n,m} Matches X at least n but not more than m times.

These patterns are greedy, i.e. they will match as much of a string as they can. This behavior can be altered to let
them match the minimum by adding a question mark suffix to the repetition modifier.

9.10.4. Alternation

An unescaped vertical bar "[" matches either the regular expression that precedes it or the regular expression that
followsit.

X|Y Matcheseither X or Y.

9.10.5. Grouping

Parentheses are used to group terms within aregular expression. Everything within the group istreated asasingle
regular expression.

(X) MatchesX.

9.10.6. Boundaries

The following boundaries can be specified.

A Matchesthe beginning of aline.

$ Matchestheend of aline.

\b Matches aword boundary.

\B Matches anon-word boundary.

\A Matches the beginning of the string.

\G Matchesthe end of the previous match.

\Z Matchesthe end of the string but for the final terminator (e.g newline), if any.

\z Matchesthe end of the string.

223

Back References

9.10.7. Back References

Back referencesallow to use part of the current match later in that match, i.e. to look for variousforms of repetition.

\n Whatever the n-th group matched.

9.11. Keyboard Shortcuts

Some of the following keyboard shortcuts may not be supported on al operating systems.

Table 9.16. Common Keyboard Shortcuts

Key Action
CTRL+Z Undo
CTRL+Y Redo
CTRL+C Copy into clipboard
CTRL+X Cut into clipboard
CTRL+V Paste from clipboard

Table9.17. Model Editor Keyboard Shortcuts

Key Action

ENTER Show properties dialog
DEL / ENTF Delete selected elements
Up/Down cursor keys Navigate tree
L eft/Right cursor keys Collapse or expand subtree
CTRL+O Open Quick-Outline
CTRL+INSERT Create New Feature/ Element (Fea
ture Model Editor, Family Model Editor)
Space Select / Unselect Features (Variant Model Editor / Matrix)
SHIFT+Space Exclude / Unselect Features (Variant Model Editor / Matrix)
CTRL+1 Evaluate Variant Description Model / Matrix
CTRL+2 Validate Model (Feature Model Editor, Fam-
ily Model Editor, Variant Model Editor)

CTRL+T Run last used Transformation (Variant Model Editor / Matrix)

Table 9.18. Graph Editor Keyboard Shortcuts

Key Action

CTRL+P Print graph

CTRL+= Zoomin

CTRL+- Zoom out
CTRL+ALT+A Show relation arrows in graph
CTRL+ALT+X Expand compl ete subtrees of selected elements

ALT+X Expand one level of selected elements

ALT+C Collapse selected elements

ALT+H Layout graph horizontal

ALT+V Layout graph vertical

224

Naming Restrictions

Key Action

ALT+DEL Hide selected elements

9.12. Naming Restrictions

There are different naming restrictions for different types of objects, which will be declared in this section.

9.12.1. Project Name

The project name follows the OS-specific rules for directory naming.

Apart from that limitation, there are no characters especially forbidden.

9.12.2. Folder Name

The folder name follows the OS-specific rules for directory naming.

Apart from that limitation, there are no characters especially forbidden.

9.12.3. Config Space Name

The config space name follows the OS-specific rules for directory naming.
Apart from that the name has to begin with aletter or underline ().

« thefollowing character is especially forbidden: (%:)

* any character which is not aletter or digit except for underline ("_).

9.12.4. Model Name

The model name follows the OS-specific rules for directory naming.

Apart from that the name has to begin with aletter or underline ().

« thefollowing character is especially forbidden: (*:)

« any character which isnot aletter or digit except for underline ().

9.12.5. Revision Name

The revision name consists of

* non-ASCI| characters or

e ASCII characterslike digits, lettersand the following: ?/-. ~1$& '()* +=

» Following ASCII characters are especially forbidden: #, : ; @ | and space (')

225

226

Chapter 10. Appendices

10.1. Software Configuration

pure::variants may be configured from the configuration page (located in Window->Preferences->Variant Man-
agement). The available configuration options allow the license status to be checked, the plug-in logging options
to be specified and the configuration of some aspects of theinternal operations of the plug-in to be specified. pure-
systems support staff may ask you to configure the software with specific logging optionsin order to help identify
any problems you may experience.

Figure 10.1. The configuration dialog of pure::variants

& Preferences O x
type filter text variant Management LI i~
General General settings
Ant
Author Local logfile location: | C:/Termnp | Browse...
CiC++ Log level:
Data Management () Standard infoermation [0]
DXL Edit:
Help o (®) + Error logging [1]
Install/Update (O + Client connection and session handling logging [2]
Java (0 + Modeling, evaluate and transform logging [3]
JavaCC Preferences (O + Commands logging [4]
JavaSeript (O + Commands internal logging [5]
Plug-in Development) + Request dumping [7]
Prolog Pref
rolog Treterences () + Method tracing [8]
Report Design
Run/Debug O+ Response dumping (all) [9]
Team [Clear logfile on startup
Validation
Variant Management | Clear stored dialog decisions
KML
Restore Defaults Apph
I
'L?J' OK Cancel

10.2. User Interface Advanced Concepts

10.2.1. Console View
Thisview is used to alter the information that is logged during program operation. The amount of information to

belogged is controlled via a preferences menu and this can be changed at any time by selecting the log level icon
in the view's toolbar. The changed logging level is active only for the current session.

Note

If the preferences menu is used instead to change the logging level then this applies to this session and
every subsequent session.

10.3. Glossary

The Configuration Space describes the set of Input Models for creating
product variants. It also defines the transformation of variants.

Configuration Space

227

Glossary

Context Menu

csv

DOT

EBNF

Family Model

Family Model Editor

Matrix Editor

Feature Model

Feature Model Editor

HTML
Input Model

Link Element

Model Rank

A menu, which is customized according to the user interface item the us-
er is currently pointing at (with the mouse). On Windows, Linux and Ma-
cOS X (with two or more mouse buttons), the right mouse button is usually
configured to open the context menu. Under MacOS X (with single button
mouse) the command key and then the mouse button have to be pressed
(while still holding the command key) to open the context menu.

Comma Separated Vauelist. A simple text format often used to exchange
spreadsheet data. Each line represents a table row, columns are separated
with a comma character or other special characters (e.g. if the commain
the user'slocale is used in floating point numbers like in Germany).

The name of atool and its input format for automatic graph layouting.
The tool is part of the GraphViz package available as open source from
www.graphviz.org .

Extended Backus-Naur Form. A common way to describe programming
language grammars. The Backus-Naur Form (BNF) is a convenient means
for writing down the grammar of a context-free language. The Extended
Backus-Naur Form (EBNF) adds the regular expression syntax of regular
languages to the BNF notation, in order to alow very compact specifica-
tions. The 1SO 14977 standard defines a common uniform precise EBNF
syntaxt.

Thismodel typeis used to describe how the products in a product line will
be assembled or generated from pre-specified components. Each compo-
nent in a Family Model represents one or more functional elements of the
products in the product line, for example software (in the form of classes,
objects, functions or variables) or documentation. Family models are de-
scribed in more detail in Section 5.4, “ Family Models” .

The editor for Family Models. See Section 7.3.3, “ Family Model Editor ”
for a detailed description.

The editor for Configuration Spaces. See Section 7.3.7, * Matrix Editor ”
for a detailed description.

This model type is used to describe the products of a product line in terms
of the featuresthat are common to those products and the features that vary
between those products. Each feature in a Feature Model represents a prop-
erty of aproduct that will be visible to the user of that product. These mod-
els aso specify relationships between features, for example, choices be-
tween alternative features. Feature Models are described in more detail in
Section 5.3, “ Feature Models” .

The editor for Feature Models. See Section 7.3.2, “ Feature Model Editor
" for adetailed description.

Hyper Text Markup Language.

Input Models are the Feature and Family Models of a Configuration Space.
They are added to a Configuration Space using the Configuration Space
propertiesdialog. See Figure 6.15, “ Configuration Space properties: Model
Selection” for more information.

Elements in models that represent linksto VDMs or Configuration Spaces
tocreateavariant hierarchy. See Section 6.2.1, “ Hierarchical Variant Com-
position ” for a detailed description.

Themodel rank isapositiveinteger that isused to control the order inwhich
the models of a Configuration Space are evaluated. Models are evaluated

228

www.graphviz.org

Glossary

OCL

pvSCL

UML

URL

Variant Description Model

Variant Result Model

VDM

VDM Editor

VRM Editor

XML

XML Namespace

XMLTS

XPath

XSLT

from higher to lower ranks, i.e. models with rank 1 (highest) are evaluated
before models with rank 2 or lower. The rank of a model is specific to a
Configuration Space and can be set in the Configuration Space properties.
The default rank is 1.

Object Constraint Language. A standardized declarative language for spec-
ifying constraints on UML models. See http://www.omg.org .

pure::variants Simple Constraint Language. A simple language to express
constraints, restrictions and calculations.

Unified Modeling Language. A standardized language for expressing soft-
ware architectures and similar information. See http://www.omg.org .

Uniform Resource Locator. A standardized format for expressing the type
and location of aresource (i.e. afile or service access point). Most com-
monly used for referring to HTML pages on an HTTP web server (e.g.
http://my.server.org/index.html)

This model type is used to describe the set of features of a single product
in the product line. Taking the Input Models of a Configuration Space and
making choices where there is variability in the Input Models creates these
models. VDMs are described in more detail in Section 5.5, “ Variant De-
scription Models™” .

This model is the result of evaluating the input models of a Configuration
Space according to a given element selection (VDM). It represents a spe-
cific variant of the input models and is used as the input for the transforma-
tion. See Section 5.9.2, “ Variant Result Models” for adetailed description.

Abbreviation of Variant Description Model.

The editor for the pure::variants Variant Description Model. See Sec-
tion 7.3.4, “ Variant Description Model Editor ” for detailed information
about it.

The editor for Variant Result Models. See Section 7.3.5, “ Variant Result
Model Editor " for a detailed description.

eXtensible Markup Language. A simple standardized language for repre-
senting structured information. See http://www.w3.org .

To provide support for independent development of XML markup elements
(DTD/XML Schema) without name clashes, XML has a concept to provide
severa independent namespaces in a single XML document. See http:/
www.w3.0rg .

XML Transformation System. The name for the pure::variants transforma-
tion system for generating variants from XML based models.

XPath is part of the XML standard family and is used to describe locations
in XML documents but also contains additional functions e.g. for string
manipulation. XPath is heavily used in XSLT.

XML Stylesheet Language Transformations. A standardized language for
describing XML document transformation rules. See http://www.w3.0rg .

229

http://www.omg.org
http://www.omg.org
http://www.w3.org
http://www.w3.org
http://www.w3.org
http://www.w3.org

230

Index

A
Analysis
Model, 80
Attribute
Calculation, 23
Element, 21
Feature, 24
Hide, 131
List Attribute, 22, 22
Set Attribute, 22, 22
Value, 22
Vaue Types, 22, 175
ps:boolean, 175
ps.class, 175
ps.datetime, 175
ps.directory, 175
ps.element, 175
ps:feature, 175
psfiletype, 175
ps:float, 175
ps:html, 175
ps.insertionmode, 175
ps:integer, 175
ps:path, 175
ps:string, 175
ps:url, 175
ps.version, 175
Attribute Overriding
Variant Description Model, 150
Attributes
Editor, 138
View, 154
Auto Resolver
Variant Description Model, 40

C

Calculations
Editor, 140
Compare
Moddl, 74
Models, 152
Configuration Space
Transformation, 50
Constraints
Editor, 140
Editor Pages, 131
Model, 20

D
Default Selected

Element Properties, 40, 137
Diaog

Element Selection, 141

E

Editor
Analysis, 80
Attributes, 138
Calculations, 140
Common Pages, 130
Configuration Space, 50
Constraints, 140
Family Model, 145
Feature Model, 142
Filter, 88
Metrics, 89
Quick Overview, 79
Relations, 137
Restrictions, 140
Variant Description Model, 146
Variant Result Model, 151
Editor Pages
Constraints, 131
Graph, 132
Table, 131
Tree, 130
Element
Attribute, 21
Calculation, 23
Constraints, 20
Default Selection State, 40
Restrictions, 21
Selection Dialog, 141
Variation Types, 177
Element Properties
Attributes Page, 138
Constraints Page, 139
Didog, 135
General Page, 135
Relations Page, 137
Restrictions Page, 139
Element Selection
Variant Description Model, 146
Element Selection Cluster, 84
Element Variation Types
Alternative, 178
Mandatory, 177
Optional, 177
Or, 178
Evaluation, 37
pvSCL Code Library, 215
Variant Description Model, 29
Export
Model, 93
Expression Editor, 140

F

Family Model, 24
Editor, 145
Element Variation Types, 177
Part Element Types, 187

231

ps.class, 188
ps.classalias, 187
ps:feature, 188
ps:flag, 188
ps.variable, 188
Restrictions, 26
Source Element Types, 178
ps.classaliasfile, 186
ps.condtext, 181
ps:condxml, 180
ps.dir, 179
psfile, 179
ps:flagfile, 185
ps:fragment, 180
ps:makefile, 185
ps:pvscltext, 183
ps:pvsclxml, 182
ps:symlink, 187
Feature
Attributes, 24
Constraints, 20
Relations, 21
Restrictions, 21
Feature Model, 23
Editor, 142
Element Variation Types, 177
Features
Matrix Editor, 152
File Update, 34
Filter
Model, 88

G

Graph Visualization
Editor Pages, 132

Guided Variant Configuration
Variant Description Model, 147

H

Hierarchical Variant Composition, 28, 43

I
Impact View
Views, 162
Import
Model, 99

K
Keyboard Shortcuts, 224

L
Language Support, 92
List Attribute, 22, 22

M

Metrics
Model, 89

Model
Analysis, 80
Common Properties, 168
Compare, 74, 152
Constraints, 20
Export, 93
Family, 24
Feature, 23
Filter, 88
General Properties, 169
Import, 99
Metrics, 89
Properties, 168
pvSCL Code Library, 215
Search, 77
Validation, 69
Variant Description, 28
Variant Result, 32
Multiple
Transformation, 68

N

Naming Conventions, 225

O

Outline
View, 157
Outline View
Variant Description Model, 150

P

Partial Evaluation
Variant Description Model, 31
Problems
View, 157
Projects
View, 167
Properties
View, 157
pvSCL
Code Library, 215
pvSCL Functions
Attribute Functions
pv:AllChildren, 199
pv:Child(index), 201
pv:Children, 201
pv:Class, 201
pv:Get, pv:Get(index), 204
pv:ID, 205
pv:IsFixed, 206
pv:Isinheritable, 206
pv:I1sKindOf(type), 206
pv:Name, 208
pv:Parent, 208
pv:Selected, 210
pv:Size, 211
pv:Type, 214

232

pv:VariationType, 214

Attribute Vaue Functions

pv:Class, 201

pv:ID, 205
pv:I1sKindOf(type), 206
pv:Parent, 208
pv:Type, 214

Collection Functions

pv:Append(expr), 200
pv:AppendAll(collection), 200
pv:AsList, 200

pv:AsSet, 200

pv:Collect(iterator), 202
pv:Contains, 202

pv:ContainsAll, 202

pv:Flatten, 203

pv:ForAll(iterator), 204
pv:IndexOf (item), 205
pv:Insert(index,item), 205
pv:InsertAll(index,collection), 206
pv:IsContainer, 206
pv:ltem(index), 206
pv:lterate(accumulator), 206
pv:Max, 207

pv:Min, 207

pv:Prepend(expr), 208
pv:PrependAll(collection), 208
pv:Remove(item), pv:Remove(begin,end), 209
pv:RemoveAll(collection), 209
pv:RetainAll(collection), 209
pv:Reverse(), 209
pv:Select(iterator), 210

pv:Size, 211

pv:Sort, 211

pv:SubList(begin), pv:SubList(begin,end), 211

Configuration Space Functions

pv:Class, 201

pv:HasM odel (name-or-id), 205
pv:Model (name-or-id), 207
pv:Models, pv:Models(type), 208
pv:Type, 214

Contextless Functions

pv:Element(name-or-id), 202
pv:HasElement(name-or-id), 205
pv:HasM odel (name-or-id), 205
pv:Model (name-or-id), 207
pv:Models, pv:Models(type), 208

Element Functions

pv:AllChildren, 199

pv:Attribute(name), 201

pv:Attributes(), pv:Attributes('type’), 201
pv:Child(index), 201

pv:Children, 201
pv:ChildrenByState(state),
pv:ChildrenByState(state,sel ector), 201
pv:Class, 201

pv:DefaultSelected, 202
pv:HasAttribute(name), 205

pv:ID, 205

pv:IsKindOf(type), 206

pv:Model, 207

pv:Name, 208

pv:Parent, 208

pv:Relations, pv:Relations(type), 209
pv:Selected, 210

pv:SelectedChildren, pv:SelectedChildren(type) ,

210

pv:SelectionState, 210

pv:Selector, 211

pv:SubTree, pv:SubTree(boolean), 212
pv:Type, 214

pv:VariationType, 214

pv:VName, 214

Environment Functions

pv:EvauationlsPartial, 203
pv:PVVersion(), 209

General Functions

pv:Get, 204
pv:IsContainer, 206
pv:IsKindOf(type), 206
pv:ToString, 213
pv:Type, 214

Math Functions

pv:Abs, 199

pv:Acos, 199

pv:Asin, 200

pv:Atan, 200

pv:Cos, 202

pv:Exp, 203

pv:Floor, 203

pv:Log, 207

pv:Logl0, 207

pv:Max, pv:Max(number), 207
pv:Min, pv:Min(number), 207
pv:Mod(divisor), 207
pv:Pow(exponent), 208
pv:Round, 209

pv:Sin, 211

pv:Sart, 211

pv:Sum, 212

pv:Tan, 212

pv:ToFloat, 213

pv:Truncate, 214

Model Functions

pv:AllChildren, 199
pv:Attribute(name), 200
pv:Attributes(), pv:Attributes('type’), 201
pv:Child(index), 201
pv:Children, 201

pv:Class, 201
pv:Element(name-or-id), 202
pv:HasAttribute(name), 205
pv:HasElement(name-or-id), 205
pv:ID, 205

pv:Name, 208

pv:Parent, 208

233

pv:RootElement, 209
pv:SubTree, 212
pv:Type, 214

Relation Functions

pv:Class, 201

pv:ID, 205
pv:I1sKindOf(type), 206
pv:Parent, 208
pv:Target(index), 212
pv:Targets, 212
pv:Type, 214

String Functions

pv:Characters(), 201
pv:Format(format), 204
pv:IndexOf (string), 205
pv:ltem(index), 206

pv:Size, 211

pv:SubString(begin), pv:SubString(begin,end),
212

pv:TolLowerCase, 213

pv:ToString, pv:ToString(delimiter),

pv:ToString(delimiter,last delimiter), 213
pv:ToUpperCase, 214

Time Functions

pv:Date, 202
pv:EvaluationDateTime, 202
pv:Time, 212

pv:ToDate, 213
pv:ToDateTime, 213
pv:ToTime, 214

User Interaction Functions

pv:ExclusionHint(message,element),
pv:ExclusionHint(message,element,force), 203
pv:Fail(message), pv:Fail (message,element), 203
pv:Inform(message),
pv:Inform(message,element), 205

pv: Sel ectionHint(message,element),

pv:Sel ectionHint(message,element,force), 210
pv:Warn(message), pv:Warn(message,element),
214

pvSCL IDE
Views, 165

R

Refactoring, 73

Regular Expressions, 221

Relation Types
ps:conditional Requires, 176
ps:conflicts, 176
ps:conflictsAny, 176
ps.defaultProvider, 177
ps:discourages, 176
ps.discouragesAny, 176
ps:equalsAll, 176
ps:equalsAny, 176
ps.exclusiveProvider, 177
ps.expansionProvider, 177
ps:influences, 176

ps:provides, 176
ps:recommendedFor, 176
ps:recommendedForAll, 176
ps:recommends, 176
ps:recommendsAll, 176
ps:requestsProvider, 177
ps:requiredFor, 176
ps:requiredForAll, 176
ps:requires, 176
ps:requiresAll, 176
ps:sharedProvider, 177
ps:supports, 177

Relations

Editor, 137
Feature, 21
View, 159

Restrictions

Editor, 140
Element, 21
Family Model, 26

Result

S

DeltaMode, 161
View, 160

Same Variants, 83
Search, 77

Model, 77
Quick Overview, 79
View, 156

Selection State Cluster, 86
Set Attribute, 22, 22
Similar Variants, 80

T

Tasks

View, 157

Transformation, 50

JavaScript, 64

Regular Expression, 62
Standard Transformation, 60
Variant Description Model, 32
Variant Result Model, 32
XSLT Extension Functions, 215

Type Model, 90

U

Update, 33

Vv

Validation

Models, 69

Variables, 220

$(CONFIGSPACE), 220
$(CONFIGSPACE_NAME), 220
$(ENV:variable), 220
$(INPUT), 220

234

$(MODULEBASE), 220
$(OUTPUT), 220
$(PROJECT), 220
$(PROJECT :name), 220
$(QUALIFIER), 220

$(TRANSFORMATION), 220

$(TRANSFORMLOG), 220
S(VARIANT), 220
S(VARIANTSPATH), 220
$(WORKSPACE), 221
Variant
Matrix Editor, 152
Variant Description Model, 28
Auto Resolver, 40
Editor, 146
Evaluation, 29
Extended Auto Resolver, 41
Inheritance, 28, 170
Load Selection, 47
Outline, 150
Partial Evaluation, 31

Rename Reused Variant Description Model, 47
Reorder Reused Variant Description Models, 48

Selection Types, 178
Auto, 178
Auto Excluded, 178
Excluded, 178
Non-Selectable, 178
User, 178
Transformation, 32
Variant Projects
View, 167
Variant Result Model
Editor, 151
Transformation, 32
Views
Attributes, 154
Impact View, 162
Matrix Edior, 152
Outline, 157
Problems, 157
Properties, 157
pvSCL IDE, 165
Relations, 159
Result, 160
Search, 156
Tasks, 157
Variant Projects, 167
Visualization, 155
Visualization
View, 155

X

XSLT Elements
error, 219
info, 218
log, 218
warning, 219

XSLT Extension Functions, 215

XSLT Functions
above-exit-point, 218
absolute, 219
add-part, 219
basename, 219
bel ow-entry-point, 218
current, 217
cwd, 219
delimiter, 219
dirname, 219
entry-points, 218
error, 218
exists, 219
exit-points, 218
expand, 220
extension, 219
filename, 219
generate-id, 217
getAttribute, 217
getAttributeValue, 217
getChildrenTargets, 216
getElement, 216
hasAttribute, 216
hasAttributeValue, 217
hasComponent, 216
hasElement, 216
hasFeature, 216
hasPart, 216
hasSource, 216
info, 218
input-path, 217
is-absolute, 219
is-dir, 219
is-file, 219
log, 218
match, 220
matches, 220
model-by-id, 216
model-by-name, 216
model-by-type, 216
models, 216
mtime, 219
normalize, 219
os, 217
output-path, 217
parse, 220
read-file, 219
replace, 220
results-for, 218
size, 219
submatch, 220
tempdir, 219
to-uri, 219
version, 217
warning, 218

235

236

	pure::variants User's Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. What is pure::variants?
	1.2. Link to PDF and Other Related Documents

	Chapter 2. Software and License Installation
	2.1. Software Requirements
	2.2. Software Installation
	2.3. Obtaining and Installing a License

	Chapter 3. Introduction to Product Line Engineering with Feature Models
	3.1. Introduction
	3.2. Software Product Lines
	3.3. Modelling the Problem Space with Feature Models
	3.4. Modelling the Solution Space
	3.5. Designing a variable architecture
	3.6. Deriving product variants

	Chapter 4. Getting Started with pure::variants
	4.1. Variant Management Perspective
	4.2. Tooltips
	4.3. Using Feature Models
	4.4. Using Configuration Spaces
	4.5. Transforming Configuration Results
	4.6. Viewing and Exporting Configuration Results
	4.7. Exploring Documentation and Examples

	Chapter 5. Concepts
	5.1. Introduction
	5.2. Common Concepts in pure::variants Models
	5.2.1. Model Constraints
	5.2.2. Element Restrictions
	5.2.3. Element Relations
	5.2.4. Element Attributes
	Attribute Value Types
	Attribute Values
	Attribute Value Calculations with pvSCL

	5.3. Feature Models
	5.3.1. Feature Attributes

	5.4. Family Models
	5.4.1. Structure of the Family Model
	Components:
	Parts:
	Source Elements:

	5.4.2. Restrictions in Family Models
	Examples of Restriction Rules
	Including an element only if a specific feature is present
	Or-ing two restriction rules

	5.4.3. Relations in Family Models
	Example using ps:exclusiveProvider/ps:requestsProvider relations
	Example for ps:defaultProvider/ps:expansionProvider relation

	5.5. Variant Description Models
	5.6. Hierarchical Variant Composition
	5.7. Inheritance of Variant Descriptions
	5.7.1. Inheritance Rules

	5.8. Variant Description Evaluation
	5.8.1. Evaluation Algorithm
	5.8.2. Partial Evaluation

	5.9. Variant Transformation
	5.9.1. The Transformation Process
	5.9.2. Variant Result Models

	5.10. Variant Update
	5.10.1. File based Update

	Chapter 6. Tasks
	6.1. Evaluating Variant Descriptions
	6.1.1. Configuring the Evaluation
	Workspace-specific settings
	Configuration-Space-specific settings

	6.1.2. Setting the VDM Configuration Mode
	6.1.3. Default Element Selection State
	6.1.4. Automatic Resolving of Selection Problems
	6.1.5. Automatic Selection
	6.1.6. Configuring the Auto Resolver

	6.2. Reuse of Variant Descriptions
	6.2.1. Hierarchical Variant Composition
	Unique Names and IDs in linked Variants
	Example Variant Hierarchy

	6.2.2. Inheritance of Variant Descriptions
	6.2.3. Load a Variant Description
	6.2.4. Rename Reused Variant Description Model
	6.2.5. Reorder Reused Variant Description Models

	6.3. Transforming Variants
	6.3.1. Setting up a Transformation
	Model List Page
	Properties Page
	Input-Output Page
	Transformation Configuration Page

	6.3.2. Standard Transformation
	Setting up the Standard Transformation
	Providing Values for Part Elements
	Modify Files using Regular Expressions
	Regular Expression Syntax

	6.3.3. User-defined transformation scripts with JavaScript
	Example:
	Evaluate PVSCL rules in a JavaScript Transformation

	6.3.4. Transformation of Hierarchical Variants
	6.3.5. Reusing existing Transformation
	6.3.6. Ant Build Transformation Module

	6.4. Validating Models
	6.4.1. XML Schema Model Validation
	6.4.2. Model Check Framework
	Configuring the Framework
	Automatic Model Validation

	Performing Model Checks

	6.5. Refactoring Models
	6.6. Comparing Models
	6.6.1. General Eclipse Compare
	6.6.2. Model Compare Editor
	6.6.3. Conflicts
	6.6.4. Compare Example

	6.7. Searching in Models
	6.7.1. Variant Search
	Search String
	Search Type
	Limit To
	Element Scope
	Attribute Scope
	Scope
	Search Results

	6.7.2. Quick Overview

	6.8. Analyse Models
	6.8.1. Finding variant description models with similar selections
	Finding variant description models similar to one base vdm
	Calculating similarity between multiple variant description models

	6.8.2. Finding variant description models with the same selection
	6.8.3. Find elements with the same selection states in all variant description models
	6.8.4. Find constant and variable elements in all variant description models

	6.9. Filtering Models
	6.10. Computing Model Metrics
	6.11. Extending the Type Model
	6.12. Using Multiple Languages in Models
	6.13. Importing and Exporting Models
	6.13.1. Exporting Models
	HTML Export
	HTML Transformation Module

	Directed Graph Export

	6.13.2. Importing Models
	User-defined import manipulator with JavaScript

	6.14. External Build Support (Ant Tasks)
	6.14.1. pv.import
	6.14.2. pv.evaluate
	6.14.3. pv.transform
	6.14.4. pv.validate
	6.14.5. pv.inherit
	6.14.6. pv.connect
	6.14.7. pv.sync
	6.14.8. pv.syntaxsemanitccheck
	6.14.9. pv.mergeselection
	6.14.10. pv.javascript
	6.14.11. pv.offline
	6.14.12. pv.online
	6.14.13. pv.userrolesync
	6.14.14. pv.property
	6.14.15. pv.about

	6.15. Linking between pure::variants and external resources
	6.16. Manipulating Text Files
	6.16.1. Setting Up the Transformation
	6.16.2. Editing Conditions and Calculations in Text Files

	6.17. Using Known Servers Preferences
	6.17.1. Central deployment mechanism of servers

	6.18. Convert a pure::variants 4 project into a pure::variants 5 project
	6.19. Customizing the Variant Configuration Process
	6.19.1. Creating a Variant Configuration Wizard Model
	Adding the Variant Configuration Wizard Model to a Configuration Space
	6.19.2. Configure a Variant Configuration Wizard Model

	Chapter 7. Graphical User Interface
	7.1. Getting Started with Eclipse
	7.2. Variant Management Perspective
	7.3. Editors
	7.3.1. Common Editor Pages
	Tree Editing Page
	Table Editing Page
	Constraints Editing Page
	Graph Visualization Page
	Graph Elements
	Graph Layout
	Graph Editing
	Graph Printing

	Element Properties Dialog
	General Page
	Relations Page
	Attributes Page
	Restrictions Page
	Constraints Page
	Advanced Expression Editor

	Element Selection Dialog

	7.3.2. Feature Model Editor
	Creating and Changing Features
	Changing feature properties

	7.3.3. Family Model Editor
	7.3.4. Variant Description Model Editor
	Element Selection
	Guided Variant Configuration
	Attribute Overriding
	Element Selection Outline View

	7.3.5. Variant Result Model Editor
	7.3.6. Model Compare Editor
	7.3.7. Matrix Editor

	7.4. Views
	7.4.1. Attributes View
	7.4.2. Visualization View
	7.4.3. Search View
	7.4.4. Outline View
	7.4.5. Problem View/Task View
	7.4.6. Properties View
	7.4.7. Relations View
	7.4.8. Result View
	Result Delta Mode

	7.4.9. Impact View
	7.4.10. pvSCL IDE
	7.4.11. Variant Projects View

	7.5. Model Properties
	7.5.1. Common Properties Page
	7.5.2. General Properties Page
	7.5.3. Inheritance Page

	Chapter 8. Additional pure::variants Extensions
	8.1. Installation of Additional pure::variants Extensions

	Chapter 9. Reference
	9.1. Element Attribute Types
	9.2. Element Relation Types
	9.3. Element Variation Types
	9.4. Element Selection Types
	9.5. Predefined Source Element Types
	9.5.1. ps:dir
	9.5.2. ps:file
	9.5.3. ps:fragment
	9.5.4. ps:condxml
	9.5.5. ps:condtext
	9.5.6. ps:pvsclxml
	9.5.7. ps:pvscltext
	9.5.8. ps:flagfile
	9.5.9. ps:makefile
	9.5.10. ps:classaliasfile
	9.5.11. ps:symlink

	9.6. Predefined Part Element Types
	9.6.1. ps:classalias
	9.6.2. ps:class
	9.6.3. ps:flag
	9.6.4. ps:variable
	9.6.5. ps:feature

	9.7. Expression Language pvSCL
	9.7.1. How to read this reference
	9.7.2. Comments
	9.7.3. Boolean Values
	9.7.4. Numbers
	9.7.5. Strings
	9.7.6. Collections
	9.7.7. SELF and CONTEXT
	9.7.8. Name and ID References
	9.7.9. Element Selection State Check
	9.7.10. Attribute Access
	9.7.11. Logical Combinations
	9.7.12. Relations
	9.7.13. Conditionals
	9.7.14. Value Comparison
	9.7.15. Arithmetics
	9.7.16. Variable Declarations
	9.7.17. Function Definitions
	9.7.18. Function Calls
	9.7.19. Iterators
	9.7.20. Accumulators
	9.7.21. Error Handling
	9.7.22. Limitations
	Depth of syntax tree
	Depth of recursive operation calls

	9.7.23. Function Library
	pv:Abs()
	pv:Acos()
	pv:AllChildren()
	pv:Append(expr)
	pv:AppendAll(collection)
	pv:Asin()
	pv:AsList()
	pv:AsSet()
	pv:Atan()
	pv:Attribute(name)
	pv:Attributes(), pv:Attributes('type')
	pv:Characters()
	pv:Child(index)
	pv:Children()
	pv:ChildrenByState(state), pv:ChildrenByState(state,selector)
	pv:Class()
	pv:Collect(iterator)
	pv:Contains(expr)
	pv:ContainsAll(collection)
	pv:Cos()
	pv:Date()
	pv:DefaultSelected()
	pv:Element(name-or-id)
	pv:EvaluationDateTime()
	pv:EvaluationIsPartial()
	pv:ExclusionHint(message,element), pv:SelectionHint(message,element,force)
	pv:Exp()
	pv:Fail(message), pv:Fail(message,element)
	pv:Flatten()
	pv:Floor()
	pv:ForAll(iterator)
	pv:Format(format)
	pv:Get(), pv:Get(index)
	pv:HasAttribute(name)
	pv:HasElement(name-or-id)
	pv:HasModel(name-or-id)
	pv:ID()
	pv:IndexOf(string-or-collection)
	pv:Inform(message), pv:Inform(message,element)
	pv:Insert(index,item)
	pv:InsertAll(index,collection)
	pv:IsContainer()
	pv:IsFixed()
	pv:IsInheritable()
	pv:IsKindOf(type)
	pv:Item(index)
	pv:Iterate(accumulator)
	pv:Log()
	pv:Log10()
	pv:Max(), pv:Max(number)
	pv:Min(), pv:Min(number)
	pv:Mod(divisor)
	pv:Model(), pv:Model(name-or-id)
	pv:Models(), pv:Models(type)
	pv:Name()
	pv:Parent()
	pv:Pow(exponent)
	pv:Prepend(expr)
	pv:PrependAll(collection)
	pv:PVVersion()
	pv:Relations(), pv:Relations(type)
	pv:Remove(item), pv:Remove(begin,end)
	pv:RemoveAll(collection)
	pv:RetainAll(collection)
	pv:Reverse()
	pv:RootElement()
	pv:Round()
	pv:Select(iterator)
	pv:Selected()
	pv:SelectedChildren(), pv:SelectedChildren(type)
	pv:SelectionHint(message,element), pv:SelectionHint(message,element,force)
	pv:SelectionState()
	pv:Selector()
	pv:Sin()
	pv:Size()
	pv:Sort()
	pv:Sqrt()
	pv:SubList(begin), pv:SubList(begin,end)
	pv:SubString(begin), pv:SubString(begin,end)
	pv:SubTree()
	pv:Sum()
	pv:Tan()
	pv:Target(index)
	pv:Targets()
	pv:Time()
	pv:ToDate()
	pv:ToDateTime()
	pv:ToFloat()
	pv:ToLowerCase()
	pv:ToString(), pv:ToString(delimiter), pv:ToString(delimiter,last delimiter)
	pv:ToTime()
	pv:ToUpperCase()
	pv:Truncate()
	pv:Type()
	pv:VariationType()
	pv:VName(), pv:VName(language)
	pv:Warn(message), pv:Warn(message,element)

	9.7.24. User-Defined pvSCL Functions

	9.8. XSLT Extension Functions
	9.9. Predefined Variables
	9.10. Regular Expressions
	9.10.1. Characters
	9.10.2. Character Sequences
	9.10.3. Repetition
	9.10.4. Alternation
	9.10.5. Grouping
	9.10.6. Boundaries
	9.10.7. Back References

	9.11. Keyboard Shortcuts
	9.12. Naming Restrictions
	9.12.1. Project Name
	9.12.2. Folder Name
	9.12.3. Config Space Name
	9.12.4. Model Name
	9.12.5. Revision Name

	Chapter 10. Appendices
	10.1. Software Configuration
	10.2. User Interface Advanced Concepts
	10.2.1. Console View

	10.3. Glossary

	Index

